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Preface

The purpose of this thesis was to develop and evaluate a new adaptive robot
control technique. The approach included the use of a Multiple Model Adaptive
Estimator (MMAE) to determine unknown parameters needed for robot tracking
and a PD feedback loop to reject disturbances. There are presently many esti-
mation techniques used for parameter identification in robot control. Before a
preferred approach can be established, the range of possible identification schemes

must be expanded and experimentally verified.

The MMAE was combined with a model-based description of the robot.
Model-based control is a mature control algorithm that has been shown to produce
superior tracking performance when the payload in known. The MMAE was used
to provide the model-based control algorithm with an estimate of the mass of the
payload. Simulation and experimentation on the PUMA-560 clearly demonstrated

the radically improved tracking performance when the MMAE is employed.

I wish to extend my deepest thanks to Capt M. B. Leahy for his many
hours of assistance and constant support during this thesis. His contributions were
indispensable. I would like to also express my sincere appreciation to Dr. Peter
Maybeck for his additional enthusiasm and insights at strategic times during this
research. A world of thanks is also owed Dr. Gary Lamont, Lt. Col Z. Lewantowicz
and Mr. Dan Zambon for their invaluable services. Finally to my family, who
Adeserved the best and had to settle for me, I want them to know that without their

unselfish love and support surviving AFIT would not have been possible.

Larry Don Tellman
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Abstract

A new form of adaptive model-based robot control has been developed and
experimentally evaluated. The Multiple Model Based Control (MMBC) technique
utilizes knowledge of nominal maunipulator dynamics and principles of Bayesian es-
timation to provide payload-independent trajectory tracking accuracy. The MMBC
is formed by augmenting a model-based controller, which employs feedforward dy-
namic compensation and constant gain PD feedback, with a payload estimate
provided by a Multiple Model Adaptive Estimator. Extensive simulation studies
demonstrated the MMBC’s ability to adapt to variations in manipulator payload
quickly and accurately. Initial experimental evaluations on the first three links of
a PUMA-560 validated the algorithm’s potential. *\ e A
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Multiple Model-Based Robot Control:

Development and Initial Evaluation

I. Introduction

1.1 Motivation

The ultimate goal in robotic research is to produce a robot that will emulate
a human. The research at the Air Force Institute of Technology has been directed
toward developing a robotic manipulator with the manual dexterity of the human
arm. Human have the ability to learn and to adapt to their environment. With
sell adaptation mechanisms, a robot could perform a wide variety of tasks, quicker,
with minimal or no human intervention. Future Air Force applications, such as
telepresence, will require a robot with the capability to adapt quickly and accu-
rately to unexpected changes in its environment while maintaining accnirate high

speed tracking.

A robot is defined as a machine that performs various complex acts of a
human {Woo77]. Current technology can only produce robots that have the capa-
bility to replace a human for many simple repetitive tasks. The heart of the robot
is the control system that guides that manipulator along a given trajectory. The
equations of motion that define how the robot moves in space are a set of complex
non-linear, coupled differential equations. To meet future Air Force requirements,
robot control systems must address the coupled non-linear nature of the equations
of motion in an uncertain environment. The model of the robot including the
external payload used in the control systems must be as precise as possible to ac-
count for high speed robot dynamics. Previous research has shown that payload

adaptation is crucial to high performance tracking [Lea8Ra).
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1.2 Objective

The primary objective of this research eflort was to develop an alternative
form of adaptive model-based control that would achieve high performance tra-
jectory tracking in the presence of uncertain payload information. The secondary
purpose was to evaluate the new algorithm’s potential both in simulation and on

a real robot.

1.3 Problem Statement

The use of on-line adaptation algorithms was a new research area for the
Robotics Laboratory at the Air Force Institute of Technology (AFIT). Some of
the ground work had been laid for such an eflort. The PUMA-560 and computer
support were available at the outset of this research. Also, miuch of the software for

the simulator and the low-level control of the robot had previously been developed.

The problem addressed in this research was how to improve high speed tra-
jectory tracking in the presence of unknown disturbances. These disturbances
arise from notse-corrupted position measurements and from incorrect models of
the robot and its payload. Proper calibration of the robot provides nearly all of
the data needed for accurate models. The major remaining unknown is the pay-
load attached to the robot. Since the payload changes during normals operation,
the robot control algorithim must quickly estimate the payload and adapt to any

fluctuations that degrade tracking performance.

Adaptive control of robotic manipulators is an area of active research. One of
the most basic forms of adaptive control is the model-based approach. Experimen-
tal evaluations of medel-l.. sed techniques have demonstrated their potential for
improving tracking accuracy over high speed trajectories [KK88,AAGH87,CHS87,
[.S8Ra,LeaR&d, A HRG,YKRT!

Unfortunately, the model-hased approaches patterned after the computed-
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torque technique [Luh83! can only adapi to changes in manipulator joint config-
uration [Cra86,FGLRTL. The tracking performance of those algorithms degrades
noticeably in the presence of uncertain payloads [(CHS87], even for robots with

high torque amplification drive systems [Lea8Ra).

Since the model-based control algorithm provides excellent tracking perfor-
mance when accurate payload information is available, one approach has been
to augment that controller with a payload adaptation mechanism [MG86,CHS87,
HBSPR7,LSR8:,SL8Tal. A comunon theme in adaptive model-Lased control design
has been the use of Lyapunov theory to develop the adaptation algorithms. Lya-
punov theory guarantees that the controller will be stable and that the steady state
errors will asymptotically approach zero. That approach is well suited to the con-
stant acceleration trajectory tracking [CCHHS87] or steady state regulation [SL87a]
of horizontally articulated manipulators for which experimental evaluations have
been conducted. However, constant acceleration and large periods of regulation
are not representative of the full range of human arm motion. Also, the horizon-
tal manipulators were not subject to the large nonconservative forces present in
vertically articulated robots. How well Lyapunov techniques control a vertically
articulated manipulator, over a more complete range of motion, is still an open

research i1ssue.

Other forms of robot control include the Model Reference Adaptive Control
(MRAC) and adaptive control using an autoregressive model. These methods as-
swmne a second-order mode! for robot dynamics is adequate, and that the coefficients
of the model are estimated on-line [DD79,Ser87,LE87 KG83). The adaptive per-
turbation control scheme on the other hand, linearizes the non-linear equations of
motion with a feedforward element and employs a full state feedback perturbation
regulator with the perturbation plant and input distribution matrices estimated
on-line '"LCR4,dVWRT!. None of these approaches attempts to model the inherent

noises in the robot system and the estimators are based on Lyapunov or least-
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squares techniques,

An alternative to the Lyapunov based approach is the use of stochastic esti-
mation/adaptation techniques. In addition to providing a faster means of payload
aclaptation, the stochastic approach explicitly accounts for the numerous sources of
noise and uncertainty in a real robotic systemn. Multiple Model Adaptive Estima-
tion is a Bayesian estimation approach that employs multiple Kalinan filters to es-
timate parameters quickly and accurately in the presence of noise and uncertainty.
A Multiple Model Adaptive Estimator (MMAE) has been successfully applied to
several difficult tracking problems [M7Z85,MR83,Ath77,Ber83,KM87,Las87,MS85).
1f that Bayesian approach could be successfully applied to the manipulator payload
estimation problem, tracking realization sufficient to emulate human arm perfor-

mance may be possible.

1.4 Approach

The robot control method developed in this thesis investigation was based
on the model-based technique that has demoustrate good tracking performance
in the presence of accurate payload information [LS88a]. The model-based con-
trol scheme is separated into two parts: a feedforward element which produces a
nominal torque and a feedback element that employs a set of gains to reject any

remaining disturbances.

The parameter identification technique employed was based on a Bayesian
approach. The algorithm is called a Multiple Model Adaptive Estimator ( MMAE)
[Ath77T,GW80,MayR82a,May82b|. The task of the MMAE was made more difficult
by the closed loop formulation of the model-based technique. The parallel structure
of the MMAE as shown in ('hapter 3 allows for the incorporation of many different
robot models into the estimation process. Each one, under different conditions,
is correct. This Multiple Model-Based Control (MMBC) formulation utilizes the

payload estimate from the MMAE in the feedforward element of the model-based
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controller which has a heavy dependence on payload.

The testing of the MMBC technique consisted of extensive simulation and
experimentation on the first three links of the PUMA-560. The PUMA-560 was
selected as a case study for the Multiple Model-Based Control (MMBC) technique
since it has been shown that the tracking performance of this vertically articu-
lated manipulator is highly dependent on knowledge of the true payload [LS88a).
To perform the initial evaluation of the new control technique, the payload was

assumed to be completely described by a point mass.

A sensitivity analysis of the perturbation feedback element was accomplished.
The nominal torques were calculated in the feedforward element. The perturbation
torques were generated in the feedback loop. The plant model, F(a,i), in the
Kalman filter was based on the feedback element. Where F'(a,t) is the linearized
equations of motion and a is the unknown payload parameter. The equations
for F(a,1) were developed by taking a Taylor series expansion of the non-linear
equations of motion about the nominal trajectory and ignoring higher order terms.
An analysis of the eigenvalues of F(a,t) revealed that linearized robot dynamics

was a function of the trajectory and had a weak dependence on payload.

The slight F(a,t) dependency on a required that the MMAE in this closed
loop estumation task be set up to produce an estimate of the difference between the
true payload and the assumed value in the feedforward element. The mismatch in
the payloads produced a large enough disturbance in the feedback loop that the

a-dependent modes in F'(a,t) would be excited.

To produce an MMAE, the continuous payload parameter, a, had to dis-
cretized and a Kalm n filter built for each value. A single Kalman filter was built
for ay equal to 0.0 Kg i.e. no payload. This formed the first filter in the MMAE.
The filter was run in simulation with the feedforward element given the same value
for the payload as the robot (0.0 Kg). The resicduals of the Kalman filter were mon-

itored as the payload on the robot was allowed to increase while holding the value
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. of the payload in the feedforward element at 0.0 Kg. The value of the payload,
a,, that produced fifter residuals that were significantly worse than the matched

payload case was used to build the next filter in the MMAE. The process was

repeated using a, as the starting point. In this manner the entire parameter space
was discretized. The upper bound on payload was assumed to be 5.0 Kg. The
system and measurement noises in the Kalman filter based on each a; were tuned
to produce the smallest residuals when the difference between the assumed payload

in the feedforward element and the payload on the robot equaled a;.

The MMBC algorithm was tested in digital simulation employing several

different robot arm trajectories. Each trajectory stressed a different aspect of the

MMBC control scheme and in all cases the potential of using the new MMAE

technique to estimate the payload was demonstrated. The results were validated

by using the same algorithm to control an actual PUMA-560. No additional tuning

of the filters in the MMAE was performed and the results still showed the payload

. estimate could radically improve tracking performance. Tuning the filters would

produce a better estiinate of the payload and further improve the tracking errors.

1.5 Accomplishments

A new and unique adaptive robot control algorithm has been developed and
evaluated. A novel parameter estimation scheme had to be produced to oper-
ate within the closed-loop model-based control structure. The resulting control
technique produced tracking errors that matched artificially informed controller
(SMBC), (a controller that has been informed of the actual payload value) in both

stmulation and experimentation for a PUMA-560.

An analysis of the perturbation plant, F'(a,t), was performed. The analysis
indicated that, for a given trajectory, F(a,!) was not constant. This realization
indicates that the often used constant F'(a,t) assumption is valid only for very slow

trajectories. This study also revealed that the dependence on a in the perturbation

1-6
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plant was reduced because of the PD feedback loop.

The end result of this research moves the Air Force one step closer in the
trek to produce a robot that emulates human motion. The findings in this thesis
investigation can be expanded to other areas that involve closed loop estimation

of a parameter needed to improve nominal trajectory computations.

1.6 Organization

The remainder of the thesis is broken into four chapters. Chapter 2 reviews
current adaptive robot control schemes. The discussions include the different sys-
tem representations as well as the assorted parameter estimation algorithms em-
ployed. Chapter 3 develops the MMBC for the general case. Chapter 4 presents
a case study for the PUMA-560. The results from the digital simulation and the
experimental evaluation are discussed. Chapter 5 contains the concluding remarks

and recommendations for future research.
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1l. Literature Review

2.1 Initroduction

The heart of a robotic manipulator is the control scheme. The controller
moves the robot along a given trajectory {from one point in space to another in the
performance of a predetermined task. Existing industrial designs are inadequate
for high speed control of manipulators [Lea88a,L.588a]. High speed is necessary for
robotic flightline maintenance and telepresence applications. These applications
usually involve scenarios where the mass of the payload and the environment are
not known explicitly and may be time-varying. Unknown and time-varying param-
eters cause uncertainties in the control system design. These uncertainties as well
as other system noises must be accounted for or adapted to in order to maximize

thie performance of the robot.

The foliowing review of robot control examines previously proposed central-
ized control techniques that do not require additional measurement data such as
torque or force. Specifically, this review covers the classical approach to robot
control {Luh83,Goo85] and continues with four other prominent robot control
themes proposed in the current literature. They are Model Reference Adaptive
Control (MRAC) [DD79,Ser87,Goo85], adaptive control using an autoregressive
miodel [KG83), adaptive perturbation control [LC84,dVW87), and dynamics-based
or model-based adaptive control [Lea88a,1.588a,CHS87,5L87a,Goo85).

2.2 Background

A robot can assume many different physical configurations depending on
the particular application (see Figure 2.1). A typical industrial robot consists
of mechanical links connected by rotary or sliding joints providing six degrees

of freedom. The links are moved by a drive system with electric, hydraulic or

2-1




Joint 2

Link !

Jownt }

Xo

Stanford robot.

Link 0 ———T—l

Link 4
Joint §
it
@ g
Link 6 A Joint 6
/ 0\
/N

PUMA robot

Figure 2.1. Some Typical Robot Configurations

pneumatic actuators. The equations of motion for a single link can be expressed
as a linear differential equation. However, when the links are connected together

they become a set of complex nonlinear, coupled differential equations [FGL87):

NY(t) = (D(q,a) + N*M)§ + h(¢,q,a) + N*Bng + 7, + 9(q,a) (2.1)
where:
‘ e n =the number of links in the robot
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¢ q,q, = n-vectors of joint angles, velocities, and accelerations.

e a(t) = m-vector of parameters representing the unknown load as a function

of time.

motor velocity )

e N =n x n diagonal matrix of gear ratios for each joint( 7 7 oy

e D(q,a) = n x n matrix of manipulator inertias which depend on the load and

the position of the manipulator.
e M = diagonal n x n matrix of actuator inertia terms.
e h(g,q,a) = n-vector of centrifugal and Coriolis torques.
e 1, = n-vector of static friction torques.
e B, = n x n diagonal matrix of damping coefficients
e g(q,a) = n-vector of gravity loading terms.

e Y(t) = n-vector of joint motor torques.

2.9 Conventional Control

In conventional robot control, the complex movement of a robotic manip-
ulator is separated into the independent control of a series of single links. Luh
presents a detailed development of a transfer function for a single link for unity
feedback and electrical actuators (Luh83]. For link ¢ in the LaPlace domain, the

transfer function has the form of:

@uls) = . (_R]i\al,hi{{(.i@ NK,K (2.2)
Qal(s) RJ.sgl8% + -“{‘JJ—JT s+ —ﬁ.if;f
where:
¢ Q, = commanded input position.
e Q4 = output position.
2-3




N = gear ratio.

e I, = encoder conversion constant in ;g;.

oz-in
Amp"®

e I; = torque constant of the motor in
o K, = back EMF constant in :,a—;

R = resistance of the motor windings.

Jess = effective inertia (NZM; + Dy;).

B.ss = eflective dampening coefficient (N2 B,,.).

In Lub’s development the motor inductance was assumed to be negligible
compared with the motor inertia. Equation (2.2) represents a second-order transfer
function with its poles in the left half s-plane. Goor states that the motor dynamics
must be included in the robot model in [Goo85) and develops a transfer function
that includes motor inductance. The result is a third-order system with the driving
input being motor voltages instead of torques. Goor maintains that, with motor
dynamics included in the link transfer function, the speed of the robot can be

increased without sacrificing performance [Goo85:page 7).

The gains of a second or third-order robot control system have upper lim-
its determined by the resonant frequency of the structure and the desire for no
overshoot. Overshoot could cause the robot to hit the environment. On the other
hand, high gains are required to reject unmodeled disturbances such as changes in
the payload. From Equation (2.1) it can be seen that the larger the unmodeled
payload, the larger the disturbances. As shown in Equations (2.1) and (2.2), the
payload contributes to the J.;s term and affects the natural frequency and damp-
ening coefficient of the system. The standard industrial practice is to tune the
control law for critically damped response with the assumed maximum payload

[LS88a).

In order to limit the effect of disturbances, the speed of the robot must be

held to a minimum. This insures stability of the robot over the entire operational
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envelope. With high gear ratios, the simple second-order model can he used for
point-to-point control if the gains are properly adjusted and the speed is kept within
bounds. If the payload information were known a priori, many of the disturbances
(e.g. gravity and Coriolis/centrifugal) could be compensated, and the controller
gains could be adjusted to provide maximum stable performance. The desire for

payload information a priori is similarly true for the third-order model.

2.{ Model Reference Adaptive Control (MRAC)

Model Reference Adaptive Control (MRAC) [DD79,Ser87,LE87] (see Figure
2.2) is a self-tuning approach based on the assumption that a second-order model is
an adequate representation of the actual dynamics of the robot and that variations
in the payload only affect the inertia values. The reference input is applied to the
robot arm to produce positions, velocities and accelerations of the links. The same
reference input is passed to the desired reference model and a desired position,
velocity and acceleration. The difference between the actual and the desired is
used to calculate a set of feedback gains that generate the torque required to
force the robot back to the desired trajectory. The model is assumed to be a
set of decoupled linear and time-invariant equations that are chosen to meet the
desired performance specifications. The MRAC approach does not require a priors

knowledge of any manipulator dynamic parameters or payload.

An attempt is made to address the unknown parameter problem employing
an adaptation scheme. The adaptive algorithm is used to adjust the feedback gains

and thus force the robot to perform like the assumed model.

Several different adaptation scheies have been proposed and evaluated in the
current literature [DD79,Ser87,LER7]. All of those techniques are based on driving
the errors between some reference input and measured values asymptotically to
zero. No a priori knowledge of the payload or manipulator parameters is assumed.

The control systeins are shown to be asymptotically stable by applying Lyapunov’s
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second method [DH81]. However, that form of stability, while extremely powerful,
does not guarantee that the response of the systems meets any sort of performance
optimality criteria. The MRAC approach also neglects system noises and uncer-
tainties such as encoder noise, gear backlash, initial misalignment of the links, and

mismodelling. An analysis of [DD79] and [Ser87] follows.

Dubowsky and DesForges first proposed the MRAC for robot control in
[DD79]. The payload and end effector were assumed to be part of the robot’s
last link and the load was counter-balanced so that gravity was not a factor in the
system dynamics. A quadratic error function was used to minimize the difference
between the reference model and the actual system dynamics. A steepest decent
method is applied to the error function to find the equations defining the position
and velocity feedback gain adjustments. The adaptation scheme requires position
and velocity error information [DD79]. The acceleration error was set equal to

zero. The stability of the control system was determined by eigenvalue placement.
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Dubowsky and DesForges tested their algorithm in simulation for a three-
link robot. The proposed scheme performed adequately in the setup described in
'DD79!. The adaptation scheme was able to adjust the feedback gains to meet
changes in the payload without any external excitation applied to the load. Exter-
nal excitation could be used to enhance the observability of the desired parameter.
There was a short period of time that the errors were excessive when the estima-
tor was learning. Dubowsky and Kornbluh experimentally evaluated the proposed
scheme using only the second link of a Puma 560 with a step input {[DK85]. The
reference model that was used assumed that there was no coupling between the
links, and the controller adapted only to changes in the self inertia matrix. The
significant inertia coupling [LSR8a] between links was ignored. Leahy, et al. have
shown in 'LeaR7h! that the position errors committed by the MRAC approach
are large and the vibration is excessive when the robot is simultaneously moving

multiple links at high speeds.

Seraji proposed a MRAC approach that uses feedforward and feedback com-
pensation and a Lyapunov adaptation algorithm {Ser87]. The feedforward compen-
sator was based on a second-order equation designed to operate at a nominal point.
The feedforward element acted as the inverse of the robot model and was used to
linearize the system dynamics equations about that nominal operating point. The
gains in the feedforward compensator were adjusted as the robot moved along a
given trajectory [Ser87:page 194]. A Proportional-plus-Derivative (PD) feedback
controller was used to improve the tracking performance of the robot, and the
gains were adjusted to cope with changes in the operating point. The operating
point was established by adding a third input torque to the sum of the feedforward
and feedback torques. This auxiliary input was a linear function of the position
and velocity errors. The coefficients of the auxiliary torque function were found
experimentally and represented the relative weighting hetween the position and

the velocity errors. The estimator was driven by the input trajectory and the error
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in position and velocity. The outputs of the estimator were the PD gains, the
coefficients in the feedforward element, and the auxiliary torque. No insight was

provided as to how to select the initial starting values of these parameters.

The control scheme proposed by Seraji was compared in simulation against a
manipulator modeled by Equation (2.1). The robot was assumed to be a two-link
system with gravity acting in the plane of the links, with the payload modeled as
part of the last link. The initial auxiliary and controller gains were arbitrarily set
to zero. The results in [SerR7] show that the actual joint positions closely followed

the commanded position.

A decentralized version of Seraji’s proposed technique was experimentally
evaluated on a Puma-560 Ser88!. The trajectories used were very slow (20° per
second commanded angular velocity), which eliminated any inertia coupling and
viscous friction effects (see Equation (2.1)). As shown in [Lea87b], slow trajectories
are not good tests of an algorithm’s merits because the nonlinear effects remain

negligible.

The MRAC method is based on a system model that does not include the
known dynamics of the robot. This approach also requires a slow trajectory to

keep the inertia coupling and viscous friction negligible.

2.5 Adaptive Control using an Autoregressive Model

Koivo and Guo have proposed an adaptive control meth~d based on an au-
toregressive model [KGR3!. As with the previously reviewed methods [DD79,Ser87],
a second-order mode! was used to represent the system dynamics, and the coupling
between the links was assumed to be negligible. The differences between the au-
toregressive and the MRAC' approaches is concentrated in how the models were
utilized and the approach taken to estimate the unknown parameters. Instead
of a differential equation of motion as in the MRAC, Koivo and Guo proposed a

second-order stochastic difference equation. The coeflicients of the defining equa-
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tion were determined by a least-squares error curve fit of the reference input data
to the output data. The adaptation scheme does not require the controller to have

a priori information about the payload or the configuration of the manipulator.

A recursive algorithm estimated the unknown parameters at #; using the
sampled outputs at ¢;,_;, conditioned on the measurement at t;. To account for
differences between the assumed model and the actual model, a noise component
was added. The noise was assumed to have a Gaussian distribution with zero
mean and a covariance of ® [KGR3:page 164]. The noise addresses only model
uncertainty and the other system noises were not taken into account. The assumed
noise distribution was not substantiated. A more accurate model of the system
dynamics and better representation of other system noises are needed to improve

tracking performance.

Simulation of the proposed controller, against the same reference nonlinear
equations of motion that Seraji employed [Ser88], showed that the output followed
the reference closely except when the trajectory changed directions. At such times,

the model output oscillated about the reference.

Koivo and Guo's autoregressive model control method was based on a system
model that does not include the known dynamic structure of the robot. This
method also requires the robot to move slowly to maintain the assumption that

inertia coupling and viscous friction were negligible.

2.6 Adaptive Perturbation Control

The perturbation control approach linearizes the full set of nonlinear, coupled
differential equations of motion al.out a nominal operating point [LC84,dVW87].
The nominal system dynamics equations were then used in a feedforward compen-
sator to control the gross motion of the manipulator. A feedback compensator was
also employed to compensate for small perturbations about that nominal operating

point. The feedback compensator used full-state feedback and is defined by:
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§i = Féz + Abu (2.3)

where:

e éz = the perturbations of the states.
e F = the Jacobian of the defining system dynamics equations.
e A = the Jacobian of the input distribution matrix.

e Su = the perturbation control inputs.

A least-squares or recursive least-squares estimation scheme was employed to esti-
mate the unknown F and A matrices. The technique of linearizing the noulinear
equation about a nominal operating point and then driving the system back to the
nominal is an approach often used for nonlinear control problems. In fact, this
research effort used the same tact. However, the approach proposed in [LC84] and
(dVWS8T] does not take into account any system noises and, as shown in [SLG78),
a least-squares or recursive least-squares estimation scheme will produce a biased

estimate of the unknown parameters if system noises are not properly modeled.

Lee and Chung utilized a Newton-Euler formulation of the manipulator dy-
namics in the feedforward component (LC84]. This provided for a quick and easy
solution of the nominal trajectory problem. However, it did require a priori knowl-
edge of a nominal payload and the configuration of the manipulator. The feed-
back compensator used the Lagrange-Euler formulation of the equations of motion
which permitted determination of the linearized perturbation equations. A recur-
sive least-squares estimation scheme was used to determine the parameters needed
in the feedback compensator. The parameter estimates were based on the differ-
ences between the input and output positions, velocities and accelerations. The
controller was then formulated as a linear quadratic control problem, optimized to

drive the perturbation states to zero at each iteration [LC84:page 245].
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Lee and C'hung’s proposed scheme was compared in simulation to the com-
puted torque technique on a three-link robot [LC84). The proposed approach
estimated the perturbation control input coefficients which were a function of the
payload. The reference controller was blinded to payload variations. The proposed
approach had smaller peak tracking error, smaller end position errors and required
less contro! energy during the trajectory, than did the uninformed reference con-
troller. What was not indicated in {LC84] was how the nominal trajectory was
computed. The common assumption is that the nominal operating condition is

the unloaded manipulator. The nominal is a function of the payload and should

be updated as the payload is changed, in order to keep the perturbations small.

A forgetting factor was used to deemphasize the old estimates since the model
used was not accurate enough to propagate the estimates forward over multiple
sample periods. The forgetting factor was determined by numerous simulation
runs. No experimental evaluation of the proposed technique has been performed,

perhaps because of the large computational power requirements.

deSilva and Van Winssen in [d{VW8T7] used the same basic approach of a
nominal feedforward component and a perturbation feedback component with the
same linear quadratic controller as [LC84]. The difference was that deSilva and
Van Winssen used a precomputed gain matrix for the fcedback compensator. As
the manipulator moved along its trajectory, the appropriate gains in the controller
were switched in and out. Input disturbances were handled by adding a disturbance
torque, and model errors were handled by adding an error to the model parameters.
Both sources of error were assumed to have a zero mean and a standard deviation
of 7% [dVWRT7:page 107], but no information was given as why 7% nor the type of

distribution used.

deSilva and Van Winssen's proposed approach was simulated on a two-link
robot, and the tracking errors were compared for runs with and without the feed-

back element in the controller. As expected, the proposed control system had diffi-
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culty following the desired trajectory using only the feedforward element. Adding
the feedback element to the controller significantly improved the tracking ability

of the control system.

However, as was the case with [LC84]}, the feedforward element needs to have
payload information in order to keep the perturbations small. Both [LC84] and
[dVW8T] need to include more information in the system models about the noise
found in a real robot to reduce estimation errors. Without a more accurate system
model, the actual performance of the adaptive perturbation controller cannot be

fully assessed.

2.7 Model-Based Control

Model-Based control can be adaptive [(CHS87,5L87a,AAH86,MG86,LS88] or
non-adaptive [LeaR8a,L.S88a]. A more common name for the most general form of
the non-adaptive model based control method is the computed torque technique
[Cra86]. Both adaptive and non-adaptive approaches require control torques to
be generated based on the dynamics model of the manipulator, and both adapt to
changes in the configuration of the robot. The adaptive versions of the model-based

method adjust to changes in the payload as well.

Dynamic compensation is employed in the model-based controller to reduce
the effect of the disturbances caused by differences between the modeled system and
the actual system. The compensation typically takes on the form of a feedforward
component that linearizes the equations of motion (see Figure 2.3) by compensating
for gravity acting on the link; the coupling of the torques between the links of the
robot; and the effects of the centrifugal forces generated as the robot is moved. The
feedforward compensator is given the desired trajectory and produces a nominal
torque. The nominal torque is applied to the robot arm and the manipulator moves
along a trajectory. The difference between the desired trajectory and the actual

trajectory is used by the feedback compensator to produce the torque required to
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Figure 2.3. Typical Model-Based Control System

drive the error to zero. The feedforward element requires knowledge of the payload
and friction in the system. It also requires that the commands to move the robot
include not only the desired position but also the desired velocity and acceleration
along the trajectory. Luh demonstrates in [Luh83) that proper compensation can
improve the performance of the robot for a given task. The feedback element is

used to reject any disturbances and reduce the tracking error of the robot.

The computed torque scheme begins with Equation (2.1) as the torque re-
quired to move the link along a given trajectory. The movement of each link is
described in a coordinate frame attached to the robot defined by the Denavit-
Hartenberg representation [FGL87]. The defining equations of motion of this me-
chanical structure is a set of nonlinear, coupled differential equations expressible

in a Lagrange-Euler or a Newton-Euler formulation.
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If the desired trajectory information is assumed to hbe known the desired

control law can be written as:

Ya(t) = Dalq, 0)ia + K.é + Ky€) + Ba (2.4)

where the subscript a denotes actual and:

¢4 = desired acceleration vector.

e e = position error vector(gqs — q).
e ¢ = velocity error vector.
e I, = velocity error n x n diagonal gain matrix.

e K, = position error n x n diagonal gain matrix.

Ba = ha(d,q,a) + N2Bm g + 7., + 94(g, a) (from Equation (2.1)).

By equating Equations (2.1) and (2.4) and assuming that the modeled dynamic

terms equal the real manipulator dynamics, the result is:

D,(g,a)[é + K,é + Kpe] =0 (2.5)

In Equation (2.5) the inertia matrix is always positive definite. Therefore
the bracket term must equal zero and the error states asymptotically approach
zero. K, and K, are diagonal and the bracketed term produces a set of linear
second order perturbation equations with their poles in the left-half plane. The
implementation of this set of equations puts the pole placement at the discretion

of the designer.

The computed torque technique was experimentally evaluated in [Lea88a)
and {LS88a] for vertically articulated manipulators and in [Kho88], [AAH86] and
[AAII88] for serial-link direct-drive arms. The feedback gains used were experi-

mentally determined. The results showed in all cases, when a complete system
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dynamics model whicl, included payload information, was used for the control of
a manipulator, the tracking of the robot was superior to tracking when the com-
pensator did not include the true payload information. Because the feedback gains
were high to reject disturbances, the controller was very stiff. Most robot applica-
tions desire both tracking performance and minimum compliance. Low compliance
1s clesirable to improve the interactions between the robot and its environment.
The model-hased control system would have to adapt to changes in the payload
if the non-adaptive approach were to be iinplemented in a changing environment

[LeaRBa,AAHS85|.

One problem with the computed torque approach is the need for payload
information. Leahy has shown that when the payload is known and the controller
is tuned to match the payload, the performance of the robot is greatly improved
[LeaR8a]. A model-based controller can only adapt to changes in the configuration
of the robot. In a changing environment the payload may not be known. This can
be overcome by using an adaptation algorithm to estimate the payload and other
required parameters and formulating the feedforward compensator to use these
estimates. Figure 2.4 shows a block diagram of how a typical adaptive model-
based control system might look. The addition of the estimator to the model-
hased control systemn takes the error in the position and produces an estimate of
the unknown parameter. The estimate of the parameter is used by the feedforward
compensator to produce a more accurate nominal torque. The feedback gains could
also be recomputed using the parameter estimate. As with the MRAC approach,
various parameter estimation schemes have heen used to fill the estimator block.
The following adaptive model-based control schemes employed the basic computed
torque approach discussed above and adjusted the feedforward and/or feedback

elements on-line to match the payload.

Craig, Hsu, and Sastry proposed to use tracking errors in the joint posi-

tions and velocities to drive the estimator for the mass and the feedback gains
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Figure 2.4. Example Adaptive Model-Based Control System

[CHS87:page 16]. The control scheme required joint accelerations, which cannot
be measured; an adaptive feedforward element made up of an estimated “mass
matrix” [CHS87:page 18] which must be inverted; and an adaptive feedback ele-
ment. The adaptive scheme was based on a Lyapunov stability approach. The

basic adaptation law was given by:

F =ThTM~'E! (2.6)
where:

o F = r vector of the parameters to he estimated.
e [' = r x r diagonal scaling matrix.
e AT =r x n matrix of dynamics terms and is k(q,q, a).

¢ M = the estimate of an n x n manipulator mass matrix.
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o E' = n-vector of servo errors(¢,e).

The solution of Equation (2.6) for the bounded initial condition on j" pro-
vides the update for the unknown parameters [CHS87:page 20]. Lyapunov theory
guarantees that the controller will be stable and that the steady state errors will
asymptotically approach zero. However, in most trajectories of interest, the desired
acceleration is not zero and therefore, the manipulator is not operated in a steady
state manner. To improve the tracking performance of the manipulator, I' must
be adjusted experimentally to produce a control system that meets the desired

performance. Adjusting I' trades peak error in tracking for speed of adaptation.

The experimental results on the first two links of an Adept One manipulator
showed good performance [CHS87|. However, the trajectories used were slow and
near constant acceleration. The estimates of the parameters appeared to be biased.
If more of the system uncertainties were included in the system model, the estimates

would be more accurate.

Middelton and Goodwin employed the same tracking error states to drive the
estimator aud a nearly identical Lyapunov adaptation scheme as Craig, et al., but
required the inversion of the joint inertia matrix in their estimator [MG86:page
68]. This could lead to problems because of computational time and the fact that
the inertia matrix can become singular due to numerical rounding in the computer.

No simulation or experimental results have been presented.

Slotine and Li used only tracking errors and joint positions and velocities
to drive their estimator [SL87a:page 49]. The main concern of their proposed
approach was how to reduce tracking errors, and not how quickly the estimator
converged. The adaptation scheme was based on Lyapunov theory and was nearly
identical to the one used by Craig, et al. The exception was that the adaptation
law was a function of the required joint velocities and accelerations instead of the

desired quantities. The required velocities and acceleration are those values that
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drive the steady state position errors toward zero. The constant ' matrix was
adjusted with different performance goals, i. e. reducing steady state position error

as apposed to reducing the tracking errors.

Simulation results shows that the convergence was slow but the tracking error
was small. The proposed technique was experimentally tested on a two-link semi-
direct-drive robot arm [SL87b]. Gravity was not a factor due to the arm movements
being restricted to the horizontal plan. The trajectories used consisted of .5 sec of
movement and then .5 sec of zero velocity and acceleration. The results presented
indicate that the adaptive control scheme has large tracking errors at the end of
the first .5 sec interval. The errors were reduced during the next .5 sec interval
but not driven to zero. Slotine and Li indicated that the remaining errors were
largely due to noise corrupted velocity measurements [SL87a:page 1396]. In any
case, the need to have a long stationary period at the end of the moving trajectory

to reduce final positioning errors is not acceptable for telepresence applications.

Li and Slotine have also developed an estimation technique that was driven
by the errors in the predicted values of the integral of the joint torque [LS88b)].
Because filtered value of the torque are utilized in the estimator, joint accelerations
are not needed. Four diflerent adaptation scheines have been proposed, all based
on a Lyapunov stability criteria. No simulation or experimental results of the new

technique or the adaptation schemes have been presented as yet.

2.8 Summary

A review of current control schemes for robots has been presented. No sin-
gle approach meets the performance needs for all applications. The model-based

control scheme has shown superior results when the payload is known a prior.

Much has been gained in the area of robot control by current research; how-
ever, for the high performance robots needed in todays Air Force the simplifying

assumptions used in the present control approaches are overly restrictive. There
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is not enough information available on proposed adaptive model-based control
schemes and therefore further investigations are justified. The control scheme
advanced in this thesis will be an adaptive model-based approach that will at-
tempt to account for all the system noises and uncertainties. The estimation
scheme will provide an estimate of the unknown payload to the feedforward com-
pensator. An algorithm used in difficult nonlinear estimation applications which
incorporates system and measurement noises is based on a Bayesian estimation
approach. The algorithm is called Multiple Model Adaptive Estimator, MMAE
[DM87,KB83,LJ87a,MZ85 MR83,MS85,Net85,BG78,Aea77,Ber83,May82a, MH87,
GW8R0,WW71]. The development of the MMAE and the resulting structure of the

acdaptive model-based control is presented in the following chapter.
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1. Algorithim Development

3.1 Introduction

There are many control algorithms currently under study to improve the
tracking capabilities of the modern robot. The previous chapter presented a re-
view of current approaches. The model reference technique assumes a second-
order model for the robot but discards any knowledge of the mechanical struc-
ture of the robot. The coeflicients of the second-order model must be estimated
DD79,Ser87,GooB5). The adaptive perturbation controller assumes a constant
feedback plant and uses an on-line estimation scheme to provide the coeflicients in
the feedback element [LC84,dVWRT7]. The model-based approach uses the knowl-
edge of the structure of the robot [LJ88b,LJS88,CHS87,SL87al. For tracking ap-
plications, knowledge of the payload is also required and in general is not known.
None of the mentioned techniques includes system and measurement uncertainties

in their models of the robot system.

Chapter 2 discussed the model-based controller. It uses the nonlinear equa-
tions of motion in a feedforward element to compute the desired torque (see Equa-
tion (3.1)). Any mismatches between the model in the feedforward element and
the actual robot are considered disturbances. A PD controller in a feedback loop is
used to reject these disturbances. A large contribution to the disturbances in the
system is the payload which consists of the mass, the center of mass, the radius of

gyration and the moments of inertia (see Equation (3.1)).

[D(q,a) + N’M|§ + h(¢,q,a) + N’Brg + 7, + g(g,a) = NY(t)  (3.1)

e where the variables are the same as in Equation (2.1).
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Figure 3.1. Adaptive Model-Based Controller

To reduce the disturbances in the system and to improve the overall tracking
performance on-line, the parameter a must be estimated. One estimation technique
used in many robot control schemes is based on Lyapunov’s second method. This
approach only guarantees that the system response will be asymptoticly stable.
Another techuique used a least-squares approach. However, without noise in the

model, this estimator is biased [SLGT8].

Our proposed solution is to combine the Multiple Model Adaptive Estimator
(MMAE) with the model-based controller. The MMAE can provide better perfor-
mance than the Lyapunov or least-squares approaches and it accounts for the noise
in the robot system. The structure of the adaptive model base controller is shown
in Figure 3.1. The overall control system has been called the Multiple Model-Based
Control (MMBC') because the control system incorporates multiple models of the
robot dynamics in the “estimator” block. The algorithm will be developed in this

chapter.
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' 3.2 Nonlinear Fstimation

The nonlinear equations of motion (see Equation (3.1)) can be written in a

more general form (see Equation (3.2)).

q(t) = fiq,q,T,a,z2,1) (3.2)
:(t) = hig,q,7,a,t) (3.3)

where:

e z(t) = measurements

o f(e) and /i(e) — are noulinear functions of the arguments

As pointed out in the Chapter 2, the robot system has noise inherent in it.

. The sources of the noise arise from imperfect calibration of the robot, incorrectly
modeled components of the robot, and imperfect measurements of the states. If the

noises are assuned to be added linearly to Equations (3.2) and (3.3), the result is

a stochastic nonlinear differential equation and associated measurement algebraic

equation of the following form [May79:

i) = flg,4,T,a,2,t) + G(1)W (1) (3.4)
h(qv()a T,a,f) + V(,) (3'5)

N
—

~~
~——

Il

where:

e ('(1)  Scaling matrix for the additive noise
o (1) =Zero mean, white Ganssian dynamics driving noise

o V(1) =Zero mean, white Gaussian measurement noise
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One solution to Eqnation (3.1) for the case where the noises are assumed to
have Gaussian distributions is the Extended Kalman Filter ({May82a:pages 44-55]).
This approach would require a to be included as states of the system. However,
stnce a is slowly time varying compared to the states of the system it can be
considered as a parameter and treated differently than the more rapidly varying

states.

If the structure of the Multiple Model-Based Controller is used (see Figure
3.1), the control system can be separated into a feedforward compensator that
produces a nominal output and a feedback element that produces a perturbation
output. The motivation for this approach is to recast the problem into a per-
turbation regulator (see Figure 3.2). If the noise is assuimed to contribute to the
perturbation output, Figure 3.3 shows the structure of the resulting system. The
fecdforward element produces a nominal torque given the desired trajectory. The
nominal torque applied to the robot generates a nominal position. Any difference
between the nominal and the desired position is assumed to result from the dis-
turbances in the system, . The feedback gains, /{ attempt to drive the errors to
zero. The perturbation system description, F'(a,t), is the first-order result of the
truncated Taylor series of f(q,q,T,a,t). The states of the controller then become
the difference between the desired position and velocity and the actual position

and velocity:

position error vector
z(t) = (3.6)

velocity error vector

The noises directly affect #(f) and the measurements of the states. The
system noises are assumed to be zero mean, white and to be pair-wise independent
of each other. The measurement noises are also assumed to be zero mean, white

and to be pair-wise independent, and to he independent of the system noises.
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Figure 3.2. Perturbation Controller With Noise

The feedforward and feedback elements are dependant on the parameter a.

FEquations (3.4) and (3.5) can be written in the form:

#t) = Fa,t)z(t) + G()W(2) (3.7)
A1) = H(tzx(t) + V(t) (3.8)

where:

e F'(a,t) = a nonlinear function of the payload and a linear function of the
states that describes the homogeneous perturbation state dynamics charac-

teristics.
e 2(1) = the noise corrupted measurements of the position error states.

o H(t) = the measurement matrix that transforms the states into the measure-

ment space.
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Figure 3.3. Feedforward Element with Perturbation Controller

e V(1) = the measurement noise.
e W(t) = the dynamics driving noise

e ((f) transforms the noise into the state space.

With Equations (3.7) and (3.8), Bayesian estimation in a multiple model
configuration can be used to determine the unknown parameter a [May82a:pages
129-136]. The basic premise of the Multiple Model Adaptive Estimation (MMAE)
technique is that the continuous parameter a can be discretized, and thus can be
assumed to be a member of the finite set of possible values, (a;,a,,...,ax). The
discretization of a must be large enough that there is a discernible difference be-
tween the models but not so large as to induce unacceptable errors in the estimate.
The state estimator or Kalman filter based upon an assumed parameter value a;

and the models of (3.7) and (3.8) in a sampled data system would be:
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() = @t t)E(t) (3.9)

P(t7) = ®(tiyr, L) PUDIOT (figr, 1) + Qults) (3.10)
(') = () + Ktz — H(t)2(t])) (3.11)
P(tf) = P(t7)— K(t;)H(t;)P(1]) (3.12)
K(t;) = PU7)YHT[H()P(t7)YHT (1) + R(t)) ™! (3.13)

where:

o z(f;) = the estimate of the state at time ¢; just prior to the measurement

heing processed at f;.
e P(t ) =the covariance of the state at time t;.
e z; = the noise corrupted measurement (in this

case the position error state).

e H(t;) = the measurement matrix that transforms the states into the mea-

surement space.
o #(t}) = the state at time ¢; after the measurement has been processed at t;.
e P(t}) =the covariance of the state at time ¢}.

o K(t;) = the Kalman filter gain at time ¢,.

o ®(ty1,t) = the state transition matrix associated witit F'(a,t) of Equation
(3.7), defined as the n x n matrix that satisfies ®(t,t;) = F'(a,t)®(t,t;) with
q’(f,', f,‘) = I

o Qq(t;) = t"'_l O(tiy1, 7)G(T)Q(T)GT(1)®T (1,41, 7)dr and Q(t) is the strength

of the Gaussian noise, W(f):
EIW(OWT(t + 1)) = Q(1)5(r).

e R(t;) = the strength of the Gaussian noise, V(t;): E{V(#;)VT(t:)] = R(t;).
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I{ a has been discretized into I different m- vectors, the MMAE would
require K such linear Kalman filters to be run in parallel. Figure 3.4 shows the
structure of the algorithm. Fach of the halman filters is presented with the same
measurement z(#;) and produces a state estimate based upon its internally assumed
model. Also computed as part of the estimation process are the residuals, r(;).
The residuals are passed to an executive program that computes a conditional
probability, p.(t;) (see Equation (3.15)). The smoothed state estimate, (¢;) is the

sum of the products as indicated in Figure 3.4.

The residuals, [z; — H(t;)#(t] )], from the filter with the most correctly as-
sumed value of a, would be the smallest relative to its internally computed residual
covariance, |HPHT + R]. In effect, the state estimates that were propagated for-
ward in time using the most correct state model, most closely match the actual

measurements of the states at ¢;.

1>

prob{a = ax | %(#;) = Z;} (3.14)

Pr(ti)
z(t,)la, a\Zi | a ,Zi~ f,‘_.
pult) = peteanlz] tu B pulleos) (3.15)
Yoo fuenezi (2 | 5,2 1)p;(ti-1)

where:

e 7(t;_1) = the measurenient history up to time ¢;_,

® fee)laziti)(Zi | ak,Zici) = the conditional probability that the iTH fil-
ter was correct. For the assumed Gaussian distribution it has the form
e-1/27'47!) where A = [HPHT + R).

N S
(2*)"/2|A‘l/2 g

e the denominator scales the conditional probability such that &K  pe(t;) =1

The conditional mean of the parameter a at #; is given by:

«
alt,) 23 awpa(ty) (3.16)
k=1
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Figure 3.4. Block Diagram for the Multiple Model Adaptive Estimation Algorithm
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Figure 3.5. Block Diagram for the Multiple Model-Based Control (MMBC)

For a more detailed development of the MMAE algorithm see [May82a:pages 129-
136).

The next chapter will use the Multiple Model-Based Control scheme (MMBC)
developed here. The estimator in Figure 2.4 has been replaced with the MMAE
(see Figure 3.5). The MMBC algorithm was employed for a case study on the
first three links of the PUMA-560. The algorithm was tested in simulation and

experimentally with very promising results.
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IV. Case Study

The previous chapter developed a Model-Based Controller with Multiple
Model Adaptive Estimation (MMBC). This chapter addresses the details of im-
plementing that algorithm for robot control and uses a PUMA-560 as a case study.
It will also discuss the evaluation of the plant or F(a,t) matrix, the PD controller
section, implementation of the Kalman filter, the MMAE and the simulator used
to test the algorithmn. In addition, experimental results of the new control scheme

for the PUMA-560 testing are presented.

4.1 Introduction

One objective of this research was to demonstrate the potential of the MMBC
technique for robot payload estimation and control. The PUMA-560 was selected
as the case study because it is representative of a vertically articulated manipulator
needed for telepresence applications. Tracking performance of the PUMA has been

experimentally determined to he greatly affected by changes in the payload.

The nonlinear equations of motion (see Equation (2.1)) were reduced in the
previous chapter to a nominal part plus a linear perturbation part (see Equation
(3.7)). The state estimator based on the linear stochastic differential equation (see
Equation (3.7)), was given as Equations (3.9)—(3.13) (the Kalman filter equations).
For application on the PUMA-560 robot, the details of those equations and the

conditional probability calculations (see Equation (3.16)), must be discussed.

The first 3 links of the PUMA-560 were used in the case study since reducing
the payload vector to just the mass has minimal impact on the large link tracking
performance. The payload was assumed to be a point mass rigidly attached to the
end of the third link, and the MMAE is to provide an estiinate of the mass of the
payload. The single parameter of the payload, reduces a to the scaler case and

decrease the number of filters needed in the MMAE to span the parameter space.
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If additional parameters of the payload are to he estimated, the size of the MMAE
Ll

would be increased. Another reason for limiting the case study to the first 3 links
is that the control of the last 3 links can be decoupled from the first three, because

inertia coupling forces between the two sections are negligible [Lea87a).

{.2 Perturbation Fquations

The process of going from Equation (3.5) to Equation (3.8) requires the par-

tial derivative of Equation (3.5) with respect to ¢ and ¢, evaluated at the nominal

q,q,T,ﬂjI

0 0 o 1 o0 0
0 0 0 0 1 0
, 0 0 0 0 0 1
Fla,t) = (4.1)
/ Ay o i AL 81 8fi
g1 g2 Ogy Ay Bqy gy
afy afy 2f 8 dfi 8f
Iy gz dg I B9z Bgy
2] a a 1] 2] a :
bk kg 3R 5B ] nominal

The configuration of the control system shown in Figure 3.3 represents a
full state feedback regulator. The model of the plant used by the Kalman filters
should reflect the actual plant as closely as possible. Therefore the plant matrix
used by the Kalman filters should include the feedback gains. This approach to the
estimation task allows the feedback loop to remain unbroken and the characteristics
of the original closed-loop system to be unchanged. The alternative would be to
include the MMAE as part of the feedback loop. The model of the closed loop
plant matrix is:

Fi(a,t) = (F)(a,t) - G(a,{)K) (4.2)

Further definition of the ;' Kalman filter is required. The G(a,t;) matrix

in Figure 4.1 determines how the dynamics driving noise, W(t) aflects the states
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_.g?__ B(a,1) ;9_’ /ot

H(t)

K(a,t)

Figure 4.1. Perturbation Controller with Noise

of the controller. The W(t) is assumed to be added to the torque applied to the

robot. The matrix G(a,t;) transforms the torque into the state space. It has the

form:

G(a1 f,-) =

[0 0 0
000
000

| D7'(q,0a) |

nominal

(4.3)

where D~1(q,a) is the inverse of the n x n inertia matrix, 1(g,a) from Equation

(3.1).

The only measurements available on the PUMA-560 are the actual joint

positions. The position state in the Kalman filter is the difference between the

desired position and the actual position (see Equation (3.6)).
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scales the state vector x(#;) to match z(#;). Since z(#;) is a linear function of the

position states,

100000
Hit)=10 100 00 (4.4)
001000

The actual calculation of Equation (4.1) is quite complex even for the first
3 links of the PUMA-560. To assist in evaluation of Equation (4.1), a commercial
software package that works with symbolic equations call MACSYMA was used
[Sym85]. A program using MACSYMA commands was developed to provide a
symbolically reduced evaluation for Equation (4.1) (see Appendix A for program
listing). The equations of motion for the first 3 links of the PUMA-560 developed
by Tarn in {TB85] were fed into MACSYMA. The friction information included in

the equations of motion was developed by Leahy and Saridis in [LS88a].

For the MMAFE routine to provide a good estimate of ¢ there must be a
measurable difference between the system models based on different values of a.
One means of assessing the differences in the plant is to examine the F(a,{) ma-
trix as a changes. An evaluation of F(a,t) had not previously been presented in
the literature, therefore an analysis was performed. A test trajectory that would
highlight the tracking performance dependence on a was selected. The position
and velocity every 7 ms along the trajectory was used to calculate the values of
F'(a,t). The choice for 7 s was established because of the experimental setup and
will be discussed in Section 4.8. Two payload conditions, 0.0 Kg. and 5.0 Kg. were
selected to provide upper and lower limits of possible payload values. The payload
was added to the existing load of links 4, 5 and 6, whose total unloaded weight is
6.97 Kg. [TB85].

The real part of the eigenvalues of the F(a,?) matrix were used as a measure

of the differences between F(a,t) for different payloads. The real part of the eigen-
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values was selected as a convenient gauge of the response of {he varions modes of
the system. The trajectory selected was fast enough that the nonlinear character-
istic of the robot were excited. The trajectory is shown in Figures 4.2, 4.3 and 4.4
for each of the three links. The real parts of the eigenvalues at each point along
the trajectory for the two payload cases are shown in Figure 4.5 for eigenvalues
1-2, Figure 4.6 for 3-4 and Figure 4.7 for 5-6. The numbering of the eigenvalues is
arbitrary but an attempt was maintain the numbering between the different load

cases.

As seen m Iligures 4.5, 4.6 and 4.7, there is a slight difference between the
nodels. It can also be seen that F(a,?) is n.t constant in time and therefore
must be re-computed along the trajectory. This thesis investigation pre-computed
F(a,t) at each point along the trajectory. An alternative approach was not in-
vestigated and was beyond the scope of this effort. Eigenvalue plots for a faster
trajectory (Trajectory Three, see Figures B.5, B.6 and B.7 and a holding or zero
trajectory (Trajectory Two, see Figure B.1) can be seen in Appendix C (Figures
BR.8, B.9,B.10, B.2, B.3 and B.4). It is apparent by comparing the eigenvalue plots
for the three trajectories that the amount of change of F(a,t) depends on the
speed of the trajectory. A constant F(a,t) can only be assumed if the trajectory

employed is significantly slower than Trajectory One.

{.3 PD Controller

The feedback controller shown in Figure 3.2 is used to reduce the tracking
error of the robot. A PD feedback loop was selected as a simple but effective
controller to reject disturbances caused by errors in the model of the robot struc-
ture and unmodeled forces. As seen in Cthapter 2, when the feedforward element
correctly models the condition of the robot, the resulting feedback element is a

second-order system:
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D(q,a)l§ + Kyé + Kye] =0 (4.5)

The gains for the PD loop were selected to provide a critically damped re-
spouse to a step input for the case of minimum inertia. This will insure that the
robot will be overdamped if the inertia increases. The system poles were selected
to be at s = —10.0. This value of frequency response was experimentally deter-
mined to provide a quick response with minimum vibration of the robot. Leahy
and Saridis present in {LS88a] that PD gains for a given link can be selected by

the following relationships:

]\’U = (J,n,',lQCLU,,—B,ff)/n}\'c (46)
K, = w2 I min/nK, (4.7)

where

e ( = the link damping ratio.
¢ w, = the link natural frequency.

Jmin =the minimum eflective inertia of the link.

o K. = the stepping motor count to torque conversion number.

B.ss = as previously defined.

For details on this development see {LS88a]. The values for K, and K, used in this

research are tabulated in Figure 4.8.

4.4 Kalman Filter

The Kalman filter equations were developed in the previous chapter for the
general case and are presented here to facilitate further discussion on the imple-

mentation of the filters in Figure 3.4:




I I Position Gains J Velocity Gains ﬂ

dLink 11 250.0 72.0
" Link 2 520.0 129.0
ILink3] 956 24.8

Figure 4.8. PD Gains

(1) = @(tipr,li)a(t) (4.8)
P(t7) = @(tipn, ) P(tH)ST (tipr, 1) + Qa(ti) (4.9)
F(IF) = 2(17) + K(t:)[ze — H(1:)2(¢])) (4.10)
Pty = P(t7) - K{t)H(t)P(t]) (4.11)
K(t;) = P(7)HT[H(t;)P(t;)HT(t:) + R(t:))™ (4.12)

Some simplifying assumptions were utilized to facilitate the realization of
the filters. As previously stated, the dynamics driving noises for each link were
assumed pairwise independent and independent of the measurement noise. The
first assumption was made to get the probl :m started. The second assumption is
reasonable since the position encoders have very little to do with the torque applied
to the robot. The measurement noise for each link was assumed to be independent
of each other since there are different encoders for each link. The noises are also

assumed have constant strength throughout the trajectory.

The value used for the covariance of the measurement noise, V(t;), was de-
termined from the resolution of the encoders. The probability density function of
the noise is uniforin with zero mean and a standard deviation equal to 1/2 the
square root of resolution of the encoder. The noise distribution was approximated

by a Gaussian distribution with the same statistics.
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The dynamics driving noise strength, @, was acdjusted using Trajectory One
to provide the best performance of the MMAE. As a first attempt at modeling
the uncertainty in the system, the noise was assumed to be not greater than 10%
of the peak perturbation torque generated during the trajectory. The effects of
this assumption will be addressed in the Recommendations section. Once @ was

selected, the value was used for all the trajectories.

The F(a,t) matrix does change during the trajectory; however, the sample
period of the controller is short enough that F(a,t) is assumed to be constant
over the sample period. The same is true of G/(a,t). With F(a,t) constant during
the sample period and the sample period being short, the state transition matrix,

d(1;,1;-1) 1s approximated by:

Ot tiy) = T+ F(t;)At + 1/2F(t;,) A (4.13)

where At is the sample period. Similarly with @ held constant, Q4(t;) is approxi-

mated by:

Q4= /til B(t;,E)G(E)QGT ()T (1, €) de = G(1:)QGT (t;) At (4.14)

The robot was started from a known position and the error was assumed to be

zero ( #(tg) = 0 ) with probability 1 ( P(/p) =0 ).

4.5 Parameter Discretization

The parameter a represents the external payload of the robot. The range
of the payload was assumed to he continuous hetween 0.0 Kg. and 5.0 Kg. A
procedure outlined by Maybeck IMay88] discretizes the parameter space such that
the different Kalman filters will be based on sufliciently diflerent models that the

MMAE can clearly separate the “pood” model from the “bad”. The technique
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basically varies the true parameter away from the filter assumed reference point
until the RMS value of the residuals, [z; — H(¢#;)#(1;)] in the reference Kalman
filter increases by 10% or more. An optimal technique for the discretization of a is
bevond the scope of this investigation and is under investigation as a separate issue
[SheR8]. There is a tradeoff in the number of Kalman filters needed to discretize
the parameter space and the amount of on-line calculation required to process all
of the filters in one sample period. Previous PUMA research suggested that three
levels of discretization is reasonable. The parameters for the filters were set at 0.0,
2.5 and 5.0 Kg. This choice spans the payload possibilities of the PUMA-560 and
keeps the computational time reasonable. If the upper limit of a were increased, the

discretization would be different and the number of filters would also be increased.

4.6 Simulator

The Multiple Modeled-Based Control (MMBC) technique was validated and
tested by digital simulation. The simulator used a fourth order Runge-Kutta rou-
tine with a 1 ms subinterval to solve Equation (3.1) [Wir87] and simulated the
actual arin motion. The values for the friction coeflicients were determined exper-
imentally for the PUMA-560 by Leahy and Saridis [LS88a). The dynamics driving
noise was simulated as zero mean, white Gaussian noise of strength .01 and artifi-
cially injected into Equation (3.1) as shown in Figure 4.1. Measurement noise was
simulated as zero mean, uniform noise with a variance of 1 x 107° and added to
the position measurements. The means and covariance for the noises were selected

for the same reasons as the initial values of @ and R.

Joint positions, velocities and accelerations which constituted a desired tra-
jectory were precomputed and given to the feedforward element. The nominal
torque out of the feedforward element plus the perturbation torque from the feed-
back element was applied to the simulator (see Figure 3.5) and the solution to

Eqnation (3.1) was computed for the next samiple period. The resulting noise cor-
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rupted position was subtracted from the previous position measurement and the

difference divided by the sample period to produce an approximation for the ve-
locity (see Equation (4.15)). A single difference approximation was employed to

be consistent with the previously developed model-based controller [Lea88b).

0811101 ., — posttion,,
6~ P ewAfp ld (415)

The error states are formed and fed into the PD controller and the MMAE
as measurements. The perturbation torque out of the PD controller was added to
the nominal torque for the feedforward element and applied to Equation (3.1) for
the next sample period. This continued until the trajectory was completed. See

Figures 4.2, 4.3, 4.4 and Appendix C for plots of the trajectories used.

4.7 Software

A large part of this research eflort was devoted to the generation of the
FORTRAN code necessary to implement the Model-Based Multiple Model Adap-
tive Estimation (MMBC) control algorithm. Appendix A has abstracts from the
FORTRAN routines used. A complete listing of the source code can be found in
[TelRR].

The software effort began with the development of the routine to produce
F(a,t) of Equation (4.2). MACSYMA was used to reduce the equations of motion
and to provide the FORTRAN code. The FORTRAN routine gave the values of
Fla,t) at each point along the trajectory. A simple MATRIXx [Int88] routine was

written to produce the real part of the eigenvalues of F(a,t).

In a paralle] effort, the FORTRAN code for a single Kalman filter was devel-
oped. A program to assist in a covariance analysis on the filter was also written.
Once the single Kalman filter was tested, the next step was to discretize the pa-

rameter space. To do this, the MMAE had to be integrated with the simulator.




A flow chart of the simulator is shown in Figure 4.7. The basic simulator was
already available, but noises had to be incorporated into the system model and the

integration of the MMAE routine had to be accomplished.

The first step in the simulator program was to initialize the Kalman filters
and to load the precomputed F(a,t). Then the trajectories for the three links were
loaded and the program entered the main loop. The loop consisted of calculating
the inertia matrix, D(q,a) of Equation (2.1), and finding a payload estimate from
the MMAE. With the payload estimate, the program calculated the nominal and
perturbation torques and applied them to the simulated robot. The arm was moved
forward in time until the next sample period by the solution to Equation (2.1).
The desired position was subtracted from the simulated position of the arm at the
end of that sample period to formi the error states. The loop continued until the

trajectories were completed.

Inside the MMAE subroutine, Equations (3.13) and (3.15) were solved to
produce the payload estimate. The FORTRAN code for these subroutines was

also developed as part of this thesis research.

{.8 MMAFE Tuning

The procedure used for tuning the filters in the MMAE was outlined by
Lashlee {Las87) and Netzer [Net85|. For this case study, the MMAE consisted of
filters based on a being 0.0,2.5 and 5.0 Kg, as previously mentioned. The goal of
the tuning effort was to adjust the noise strengths @ and R to extract the best
performance of the individual Kalman filters in the MMAE. Q was held constant
for each filter and R was varied to achieved the simallest residuals. Then R was
held at that value and @ was allowed to change until the residuals were minimized.
Q was kept small to keep the model diflerence apparent since as @ increases, the
Kalman filter places more emphasis of the incoming measurement and less on the

propagated state.
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The analysis of the residuals of each filler showed that, when the external
load matched the controller’s assumed load, the residuals based on 0 Kg. were
smallest. In this situation the conditional probability calculations for a would
indicate that 0 Kg. should be the estimate of the payload out of the standard
MMAE. As previously indicated, when the feedforward element matches the true
configuration of the robot, the result is a linear, second order system. This second-
order system has very little dependence on the external payload. Hence, the MMAE

cannot distinguish between the different filters.

The small changes in the feedback element caused by changes in the payload
as well as other miss-modeled terms in Equation (2.1) appear as disturbances and
are rejected by the PD controller. Since the F(a,t) matrix was based on the
closed loop system as shown in Figure 4.1, when the external payload matches
the controller’s value for payload, there is no significant difference between the
system models in the MM AE. This was apparent by the weak dependence of F(a,t)
on the parameter a. Only as the external payload is allowed to change from
the controller’s value is the differences between the models apparent. Then the
residuals in the MMAE reflect the difference in the true payload and the internally
assumed value of the payload. The parameter in the MMAE is a delte mass instead
of the actual value of the mass of the payload. This is not the previously publicized
operation of the MMAE. The MMAE typically estimates the actual parameter, not
the difference in the between the assumed value and the true value. The filters
in the MMAE were re-tuned with the goal to minimize the residuals when the
difference between the external payload and the controller’s value for the payload

matched the filters delta a,.

The sign of the residuals is positive for the case when the external payload is
larger than the controller’s value for the payload. The positive sign indicates that,
during a sample period the actual states of the system are propagated farther than

the estimates of the states. In others words, actual errors grow larger than the

4-18




"'A Load | MMAE Output | Sign of Residuals | Curve Fit Est. (Figure 4.11)
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Figure 4.10. MMAE Performance

filters in the MMAE predict them to grow. The sign changes when the controller’s
value for the payload is larger than the external payload. In this situation, the
estimates of the states are propagated farther than the actual states. The sign
convention remained true during all three trajectories. The sign on the residuals
was used to determine whether the MM AE estimate is to be added to or subtracted
from to controller’s present value. The output of the MMAE and the sign on the

resicduals is shown in Figure 4.10 for Trajectory One.

Figure 4.11 shows the same data graphically for the positive residuals case.
As can be seen, the output of the MMAE is well approximated as linear except for

the region where a,, is small. A least-squares curve fit to the data gave:

s = 1.856a, — 3.793 (4.16)

where

o a; = the curve fit estimate of the delta mass of the payload

o a,, = the delta mass output of the MMAE
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Figure 4.11. Estiinated Load Verses True Load

The nonlinear region of Figure 4.11 is thought to be caused by the fact that the

residuals in the MMAE become nearly equal as the delta mass approaches zero.

Research indicated that the sign on the residual from the link-two states in
the 2.5 Kg. filter provided the best indication as to how the delta mass should be
combined with the present value of a. The calculations using the sign from the
residual and a; can be included in the overall estimation algorithm, and the final
output would be a. Henceforth all reference to @ will be the final output of the

estimator.

The MMBC development thus far has been for the general manipulator.
However, Equation (4.16) may be unique for each different class of robot and

would re-evaluated when MMBC routine is implemented on different robot.

4.9 Conlroller Analysis

The purpose of the MMAE was to provide an estimate of the payload to the

model-based controller that would reduce the tracking error. The control algorithm




consisting of the feedforward element, the feedback element and the MMAT, was
tested using the three trajectories discussed previously. The first case was the
Trajectory Two. This trajectory held the robot stationary and should provide the
least excitation to the estimator and increase the difficulty of the estimation task.
Persistent excitation to the system would help to excite the parameter dependent
modes thereby making the enhance the differences in the models of the MMAE.
From a practicable standpoint, this external excitation could cause unnecessary

vibration and reduce tracking accuracy and therefore was avoided.

The position of the arim was chosen as 0°, —135° and 135° for links one, two
and three, respectively, and commanded to maintain that position. This position
was selected as one that has proven very difficult for the model-based controller
to handle on the PUMA-560 [LeaR8¢c]. A payload of 4 Kg. was selected as a value
that would be large enough that tracking would be difficult if the payload were not

known, yet less than the upper limit of a used for the design of the MMAE.

The typical tracking errors of each link for a single run are shown in Figures
4.12, 4.13 and 4.14. Included in the plots are the tracking errors for the model-
based controller with no payload information. This represents the case where the
non-adaptive Single Model-based Controller (SMBC) is employed in place of the
MMBC'. As can be seen, the tracking error is greatly improved with the use of
the MMAE. A reference plot is also included in the figures where the SMBC is
artificially given the true payload. This is the best that the MMBC could hope to

achieve,

The actual parameter estimate used by the controller is shown in Figure
4.15. The payload estimate has some high {requency oscillation, but is centered
ahout the actual payload, 4 Kg. The a output of the MMAE reaches steady
state very quickly. There is a small bias on a; but the sign on the residual is
dithering. This put the high frequency oscillation on a. The oscillation is due to

the models becoming nearly equal as the difference between the actual payload and
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the controllers value of the payload approaches zero. The high frequency oscillation
should not pose a problem for the PUMA since the band-pass of the robot is less
than the frequency of the oscillation. If the oscillation can not be filtered out by
the robot, the estimate out of the MMAE could be filtered before it is added to

the controller.

Trajectory Two demonstrated the MMAE’s ability to provide an estimate of
the payload that will significantly reduce tracking errors with minimal movement
hy the robot. To test the MMAE under conditions where the nonlinear effects
of the rohot become significant, Trajectory One was used. The tracking errors
for this trajectory are shown in Figures 4.16, 4.17 and 4.18. The results again
show that the MMAE can quickly provide an estimate that will greatly reduce the
tracking error. The peak and end tracking errors of the MMBC are very close to
the artificially informed SMBC and much better than the uninformed SMBC. The

estimated value of the payload used by the controller is shown in Figure 4.19.

The peak tracking errors for the MMBC on all three links is slightly higher
that the artificially informed SMBC but much less that the uninformed SMBC.
The final position errors for the MMBC' are essentially equal to the artificially

mformed SMBC and again, much better than the uninformed SMBC.

The models in the Kalman filters in the MMAE did not include acceleration
information. To improve tracking of trajectories with large jerk components, accel-
eration information needs to incorporated into the filters. The present system noise
strength, @, allows the filters to track profiles with mild jerk components. A third
trajectory was used to test the capabilities of the MMBC with high jerk trajecto-
ries. Trajectory Thiee is shown in Appendix C. The tracking errors for Trajectory
Three are shown in Figures ('.1, (".2 and (".3. Again, tracking is greatly improved
Ly the use of the MMAE over the uninformed SMBC but there is additional track-
ing performance to be gained. The payload estimats ¢ and the value of the delta

mass, ay are shown in Figure (.4,
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Figure 4.13. Tracking Error with Trajectory Two: Link 2
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Figure 4.14. Tracking Error with Trajectory Two: Link 3
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Figure 4.15. Payload Estimate for Trajectory Two
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Figure 4.17. Tracking Error with Trajectory One: Link 2
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Figure 4.18. Tracking Error with Trajectory One: Link 3
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The tracking errors are greatly improved with the MMBC over the unin-
formed SMBC. The payload estimate tracks well until the trajectory makes it first
change in acceleration, after which the MMAE continued to track for a while and
provides good estimates of the payload. Eventually the Kalinan filters put out bad
residuals and Figure C.4 shows the payload estimate tailing off near the end of the

trajectory.

Two solutions to this problem arise. One would be to include acceleration
as states of the system. The Kalinan filter would carry these states around but
not use them for control generation. The six-state Kaliman filter would grow to
nine states and thereby increasing the computational load. The other solution
would be to have an executive program monitor the residuals and turn off the
MMAE as long as the residuals stay small. If the residuals grow larger than some
predetermined level, the MMAE could be turned on again and get a new estimate
of the payload. The current value of the parameter would be used during the
time the MMAE is off. This would have a minimal increase in computation time
during the acquisition phase, but would reduce to total computational burden by
only re-computing a new parameter estimate when necessary. Another advantage
of this solution is that the oscillations in the payload value used by the controller

would be reduced.

To more fully stress and better highlight the capabilities of the MMBC, a
task was simulated where the robot had picked up an unknown payload and while
in motion, inadvertently dropped it. The external payload was set to 4 Kg. at the
start and was set to zero at 0.7 sec into the trajectory. The drop time was chosen
to be after the initial acquisition period and before the peak velocity. Figures
4.20, 4.21 and 4.22 show the tracking errors when the external payload (4 Kg.)
1s artificially given to the SMBC ouly at the start of the trajectory and then the
payload is dropped. Also shown is the case where the MMBC is used and the

controller is initially told nothing about the external payload.
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. The MMAE must adapt to both the picking up and the dropping of the pay-
load. As the figures show, the tracking errors with the MMBC are less and the
payload estimate converges very quickly (see Figure 4.23). This capability has not
been demonstrated with present adaptation scheines used for robot control
'Ser88,SL87a,LS88h,MGR6,DK85,AAHRR AAIIBG,dVWST,LC84,KG83,Goo85,Ser87)
MD79,SL87a,('HS’T,AAHR5].

In addition to examining tracking errors, a comparison of the total applied
torque to the arm, T, for the MMBC and the true SMBC provides insight into
how well the payload estimate is working. If the tracking errors are essentially the
same but the diflerence in the applied torques is substantial, the algorithm using
the least amount of torque is the preferred one. Figures 4.24, 4.25 and 4.26 show
the total torque applied to the arm for the three links using the MMBC and the
artificially informed SMBC. Trajectory One was used and the payload was 4 Kg.
The figures show that the torques from the MMBC due oscillate. This is because

‘ of the oscillation in the payload value in the feedforward element. The peak for all
the links is higher for the MMBC than ti.e SMBC, but the area under the curves
appears to be about the same. This is an indication that the amount of energy
used by the MMBC and the SMBC is roughly equivalent and there is no additional

cost for using the MMBC approach.

The tracking errors were greatly improved in all cases over the uninformed
SMBC and were nearly equal to the artificially informed SMBC. The closed loop
parameter estimation for this case study required an approach not previously taken.
The MMAE was set up to provide an estimate of the difference hetween the as-
sumed value of the payload and the true value. The Multiple Model-Based Control,

MMBC, has shown good promise for robot control in simulation.

The following section presents the experimental results of the MMBC used to
control the PUMA-H60. The MMBC was used on the first three links of the PUMA-

. 560 without any additional tuning of Q) and R in the Kalman filters. Re-tuning
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Figure 4.21. Tracking Error with Dropped Payload: Link 2
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Figure 4.22. Tracking Error with Dropped Payload: Link 3
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was not required to demonstrate the potential of the MMBC technique. There
is additional tracking performance to be gained by tuning the Kalman filters to

match the robot.

4.10  Ezperimental Frvaluation

The potential of any new control algorithms must by experimentally eval-
uated before any claims of success can be made. Leahy has developed a PUMA
control environment [LS86] that the MMBC was tested under. The nature of the
model-based control scheme naturally allows for a coarse parallel structure of the
control algorithm. R3IAGE was modified to exploit this characteristic and the feed-
forward and feedback calculations were put on different computers [Lea88b|. The

feedforward processor was upgraded to a VAXstation I for this thesis effort.

4.10.1  Test Setup The MMBC scheme was implemented on the PUMA-
560 available at AFIT. The first three links of the robot were used to demonstrate
the control technique and the last three links were held stationary at 0°. The
computations needed to control the robot were proportioned between two parallel
processors, a PDP 11/73 and a VAXstation 1. The coarse parallelism inherent in
the model-based control structure permits the feedforward calculations to run at a
different rate and on a different computer than the feedback calculations, without

degrading tracking performance [Lea8%b!.

The 11/73, or Servo Processor, performed the PD loop calculations, read
joint encoder values, and passed motor torques to the robot. It also established
the basic timing for the overall control and communication at 7 ms. This was the
titning signal available from the 11/73. The assembly language routines used in
the Servo Poocessor to control the robot were a modified version of those originally
developed at Rensselaer Polytechnic Institute by Leahy 'LS86]. The modifications

provided for the distribution of the nominal torque and estimation calculations to

136




the feedforward processor [LeaR8b).

The communications between the Servo Processor and the feedforward pro-
cessor was handled via a 1¢ bit, DRV 11-J, parallel interconnect. The information
passed over the buss consisted of 12 real nummbers: six joint positions from the Servo
Processor and six nominal motor torques to the Servo Processor. The computer
system level calls for the communications were handled by a commercial software
package called VAXLAB [Dig86). The time for the 12 numbers to be transferred

between the two computers was about 2.25 ms.

The time for the VAXstation to compute the nominal torques employing the
payload estimate required about 19 ws. To maintain synchronization between the
two computers, the timing for the nominal torque updates including the data trans-
fer time must be a multiple of 7 ms. The VAXstation performed its calculations
and waited for the Servo Processor to initiate data transfer. The Servo Processor
performed the data transfer to the VAXstation at a 28 ms cycle time. The 28 : 7
split between dynamics compensation and servo loop update rates still produces
good model-hased control tracking results [L.ea88h] when payload information is

available.

{.10.2  FErperimental Results The noise strengths in the MMAE filters from
the simulation were used without any additional tuning. The results were very

promising ir spite of the lack of retuning the system noise strengths.

A payload of 2.5 Kg. was used for the experiment so as not to exceed the
manufacturer’s specification for maximum payload. This has been shown to cause
severe perforinance degradation {LeaR8bl, Trajectories Oue and Three were used
and the tracking errors are shown in Figures 4.27, 4.28, 4.29 and Appendix E.
The plots show the cases for the incorrect SMBC, the MMBC and the artificially
informed SMBC'.

As can be seen, the MMAE greatly improved the tracking performance of
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Figure 4.28. Experimental Tracking Error for Trajectory One: Link 2
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Figure 4.29. Experimental Tracking Error for Trajectory One: Link 3
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Figure 4.30. Experimental Payload Estimate

— | Payload Value Used In Feedforward Element: a
Payload Estimate Out Of MMAE: a;

the robot. Compared to the tracking performance in simulation, there is some
additional accuracy to be gained by tuning the filters in the MMAE to match the
robot. The noise strengths in the experiment were the same ones used in the sin-
ulation. The sign on the residuals is not always reflecting the correct situation and
the estimated from the MMAE is incorrectly being combined with the controller’s
present value in the later part of the trajectory. Figure 4.30 indicates that the
estimate from the MMAE (a,) looks the same during the trajectory but the value
used by the controller (a) decreases at the end of the trajectory. This indicates
that the signs on the residuals are not correct. Tuning the filters should alleviate
this tendency. Also the high frequency oscillation in the payload estimate seen in

simulation is not present in the experimentally tracking errors.

Similar results can be seen for Trajectory Three in Appendix E. They show

the same problem as in simulation. The payload value decreases during the later
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part of the trajectory because of the high jerk profile. The same two solutions

discussed above can be employed here.

A new robot control algorithm (MMBC) has been developed and an initial
evaluation performed. The potential of using the MMBC has clearly been demon-
strated. A complete evaluation of the new technique is beyond the scope of the

thesis. The following section will discuss some of the remaining issues.

{.11 Discussion

The MMBC technique has been successfully demonstrated in simulation and
experimentally evaluated on a PUMA-560. Some implementation issues were ad-
dressed as part of the initial evaluation. To more fully assess the potential of the

MMBC, there are other issue that must be addressed.

The MMBC requires running three Kalman filters and executing the con-
troller calculations in parallel at high speeds. This is not a trivial task. Very
minimal FORTRAN code optimization has been applied to the present program.
The computer used for the simulation (VAXstation III) runs at 3 MIPS and the
MMAE calculation require approximately 18 to 19 ms. This could be reduced by
more efficient FORTRAN coding.

A larger payoff could be realized by reducing the number of links in the models
used in the Kalman filters from three to two. This would reduce the number of
states from six to four. The results over Trajectory Two show that lack of motion
of the links does not degrade the estimator’s performance. The time to run the
MMAE algorithm would be significantly reduced and the estimation routine could
be run at the same sample rate as the feedback controller. Preliminary research
into state reduction indicates that four states should be sufficient for the MMAE

to estimate the payload.

For this investigation, the F(a,!) matrix was precomputed. By reducing the

number of states to four, the F(a,f) matrix should be able to be computed during
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the dynamic compensation interval. Having F(a,t) computed on-line would make

the MMBC( algorithm more versatile.

The high frequency oscillation in the output of the parameter estimate could
be addressed in several ways. The output could be put through a low-pass filter;
however, this would reduce the convergence time of the MMAE. Another approach
would be to monitor the residuals and turn the MMAE off once the controller has
a good estimate of the payload. The residuals would continue to be monitored to
determine when a large change had occurred. Then the MMAE would be turned
on again until the controller had a new estimate of the payload. The performance
of the MMBC algorithm on the PUMA-560 has shown that the tracking is not
effected by the oscillation in the parameler estimate. This idea is in consonance
with a number of researcher’s philosophy of turning parameter identification on

only periodically [May88].

As can be seen from Figure 4.10, the estimate is biased. When the bias is
removed by the use of Equation (4.16), the result is a very good estimate of the
delta payload (see Figure 4.11). The reason for the bias in the MMAE output is
not exactly clear as yet. This is a nonlinear estimation problem, so a bias in the
output is totally unexpected. One possible contribution could be the assumption
that the dynamics driving noises are pairwise independent. Since the equations
of motion are highly coupled, it is reasonable to assume that the noises would
also be coupled. Since this was the first attempt at using Bayesian estimation for
robot control, the noise models were kept simple in order to establish a baseline

for further research.

When the output of the MMAE (a) was used in the feedforward element,
results have shown that tracking is enhanced and that a; approaches zero in steady
state. Figures 4.19 and C'.4 indicate a hias of about 0.4 Kg. in a;. This remaining
bias may be linked to the correlated noise problem just discussed. When the bias

is removed from ay, Figure 4.31 shows the resulting a and the estimate of payload
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Figure 4.31. Payload Estimate With Bias Removed

— | Payload Value Used In Feedforward Element: a
Payload Estimate Out Of MMAE: a;

used in the feedforward element, @. As can be seen, the tracking improvement is
substantial. Figure 4.32 shows the tracking errors for all three links. The tracking
performance is nearly the same as the case with the bias. Figure 4.33 shows
the torques generated. The high frequency oscillation is removed for all but the
acquisition phase of the scenario. When the bias was removed in the experiment,
the tracking results were less impressive. Tuning the MMAE to the robot should

improve this condition.

Preliminary evaluation of simulation results showed that, in the conditional
probability calculations (see Equation (3.15)), the value for pi(f;_1) had to be
kept at 1/3. Without pi(f;_;) held constant, the output of the MMAE became
erratic. The effect of keepiug pe(fi-) constant is to reset the conditional probability
calculation each sample period and to disregard all the information that went into

making the previous parameter estimate. The controller’s value of the payload
I p pay
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converges very quickly to the externally applied value and tracking performance is

umproved when p,(t;-y) = 1/3.

{.12  Summary

The results of the simulated and experimental control of a PUMA-560 using
a Multiple Model-Based Control (MMBC) technique have been presented. The
tracking errors of the robot were greatly reduced when the MMAE was used to
provide the model-based controller an estimate of the payload. In simulation the
tracking performance of the controller with the MMAE was comparable to the
SMBC with full payload information. The performance of the MMBC on the
PUMA-560 seemed to validate the simulation results. The tracking errors were

significantly reduced when compared to the uninformed SMBC and very close to

the artificially informed SMBC.

Issues that warrant additional research have been highlighted. However, the
results from this effort indicate that the MMAE can be used to provide a closed-
loop estimate of the payload, that the MMAE can quickly adapt to changes in
the payload, and that the model-based MMAE provides excellent control of the
robot. In the final analysis, the MMBC(' has demonstrated the potential to provide

a unique solution to a critical Air Force problem.
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V. Conclusions and Recommendations

5.1 Conclustons

The research performed in support of this investigation met the stated ob-
jective and has proven very {ruitful. The Multiple Model Adaptive Estimation
(MMAE) technique has successfully been applied to the difficult problem of closed-
loop payload estimation in model-based robot control. Combining the MMAE with
a proven contrel technique has resulted in a new development that has the poten-
tial to be very useful in application where changing payloads can be expected. The
estimate of the payload converges very quickly, which allows the controller to keep
the peak tracking error to a minimum. The rate of convergence does not seem to
depend on the trajectory used, and therefore persistent excitation appears not to

be a problem for the Multiple Model-Based Controller (MMBC).

As part of the thesis effort an analysis of the perturbation plant, F(a,t) was
performed. The analysis showed that dependence of the payload on the perturba-
tion plant is minimal when the feedforward element correctly models the payload
coudition of the robot. The investigation also showed that F(a,t) can only be
assuined constant for very slow trajectories. The use of the perturbation approach
has been discussed in the literature and the minimal dependence of the payload
has been assumed. Now that assumption has been demonstrated to be acceptable

only under restrictive conditions.

A new delta parameter approach was taken to produce a parameter estimate
because system model differences were apparent only when the controller’s payload
value, a, was mismatched from the true value. A new technique for estimating a
based on the residuals from a bank of linear Kalman filters had to be developed.
This new technique provides an estimate of the delte mass of the payload. The

signs of the residuals indicates if the estimate of a is added to or subtracted from




the controller’s present value of the payload. The result is a parameter estimate
that converges very quickly. A review of current publications indicates that this

approach is unique.

In simulation the MMBC' tracked as well as the artificially informed model-
based controller and required about the same amount of control energy. The peak
and final tracking errors for the MMBC were much better than the uninformed
model-based controller. A special trajectory was used to demonstrate the adaptive
capability of the MMBC. The robot was commanded to move along a trajectory
and the payload was dropped before the end of the run. The MMBC tracking
results were much better than the non-adaptive model-based controller (SMBC)
that had been given the true load initially but not told that the payload was

dropped.

e simulation results were validated by implementing the MMBC on the
PUMA-560. The noise strengths in the Kaliman filters were not changed from the
simulation values when the MMBC was run on the PUMA. Again, the tracking
errors were greatly improved over the uninformed SMBC and comparable to the

artificially informed SMBC.

5.2 Recommendations

The objective of this thesis was to develop and initially evaluate the potential
of using a control scheme that employed the Multiple Model Adaptive Estimator
(MMAE) to provide an estimate of the payload to a model-based controller. The
reference used to measure the potential of the new algorithimm was that the Multiple
Model-Based Controller (MMBC') should track as well as the artificially informed
model-based controller. The MMAE has successfully shown that it can provide
pavload estimmates that greatly improve tracking of the robot. Some issues surfaced

that were not part of this thesis effort but need further investigation.

One area that warrants additional effort would be the refinement of the




present algorithm. The FORTRAN code could he optimized and the nuimber of
states reduced. All this is in an effort to reduce the computational burden. Also
there is current research at AFIT that will put the entire Kalman filter algorithin
on a single integrated circuit in the 1989 time frame. This would greatly reduce
computational time needed to run an MMAE scheme and may be a necessity if a
is expanded to include additional parameters. It will also allow the F(a,t) matrix

to be computed on-line, thereby increasing the flexibility of the MMBC algorithm.

Another area should address the tuning of the Kalman filters in the MMAE.
The noise levels that were used in the simulation were also employed in the exper-
iment. The tracking of the PUMA could be improved by re-tuning the MMAE to
match the robot. The system and measurement noise strengths used in this thesis

were a first attempt to add noise to the model of a robot in a meaningful way.

Also the payload was assumed to be a point mass. The cases when this as-
sumption cannot be made need to be experimentally investigated. The MMAE
might have to be expanded to include parameters other than the mass of the pay-
load. If a point mass assumption cannot he made, a could be expanded to include
any of the m additional payload parameters required. This would uecessitate ad-

ditional Kalman filters in the MMAE.

The final area to consider wonld be to compare the MMAE to other tech-
niques that have been proposed in the literature. The MMAE technique works, but
it may not be the best for all robot estimation tasks. A head-to-head comparison
of different techniques would help define the strong points of the MMBC approach.
The delta estimation approach could be used in otlier areas as a new technique to
estimate unknown parameters in a closed-loop situation. The scheme developed
in this thesis provided a very quick and accurate estimate without the -1se of an

excitation signal.

The remaining issues do not pose any real obstacles to the successful appli-

caticn of the Multiple Model-Base Control technique to the robot control problem.

3




Il applied to telepresence activities, the robot employing a MMBC could operate
without a prior payload information. The unknown payload could be estimated
very quickly and be used to improve the tracking of the robot. The samne estimate
could be telemetered back to the remote operator to provide him/her with sensory

feedback as to hiow heavy the load is, thereby improving the overall performance

of the telepresence loop.
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Appendix A. Macros and Abstracts of FORTRAN Source Code

This appendix provides an example for the macro used in MACSYMA. Also
included are the abstracts of the FORTRAN code used in this thesis.

@ This macro will find the equations of motion for the
@ first 3 links of a PUMA-560. It is based on
@ Tarn’'s paper

@ set up the environment

writefile("fullrun_8.log");

fpprec : 5;
‘ fpprintprec : 3;

infeval : true;
float2bf : true;

@ dimension the needed arrays

array(D,3,3)$
array(D1l,3,3)
array(D2,3,3)
array(D3,3,3)

@ initialize constants

grav : 9.8062$

load : 0.0;

ail : .7766;
ai2 : 2.2%616;
ail3 : .5827;




@

ml : 12.96$
m2 : 22.37$

s23 : sin( q2 + q3 )$
c23 : cos( q2 + q3 )$
c22 : cos( q2 + q2 )$S

cl : cos(ql)$
c2 : cos(u2)$
c3 : cos(q3)$
sl : sin(ql)$
s2 : sin(q2)$
s3 : sin(qg3)$

a2 : 0.4318%

a3 : -.0191%
£2 : .15058§
xbl : 0.0$
ybl : .30889$
=bl : .0389§
xb2 : -.3289%
yb2 : .00508
zb2 : ,2038%
klxs : .1816$
klys : .0152%
klzs : .18118$
k2xs : .05968$
k2ys : .1930$%
k2zs : .15148$
k3zs .0021%

mti 1 0 / (load + 6.97)$

start calculation

xb3 : 6.97 * ,0136 * mti$

yb3 : 6.97 * .0092 * mti$

zb3 : (6.97 * .1522 + ,48932 * load) * mti$

k3xs (59858534& * load + 262504960)/(2500001792 * load
+ 17424973824)§

k3ys : k3xs$

m3 : load + 6.97;

load inertia matrix

D{1,1) : ail + ml * klys + m2 * k2xs * s2"2 +
m2 % k2ys * c2”2 + m2 * a2”2 * c2"2
+ 2 * m2 * a2 * xb2 * ¢2"2 + m3 * k3xs
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D[2,2]

D[3,3]

D[1,2]

D[1,3]

D[2,3]

D[2,1]

D[3,1]

D[3,2]

* 52372 + m3 * k3zs * ¢c2372 + m3 * £372

+ m3 % a2”2 * ¢2”2 + m3 * a3"2 * c23"2

+ 2 % m3 * a2 * a3 * ¢c2 * ¢23 + 2 * m3 *
xb3 * a2 * ¢c2 * ¢23 + 2 * m3 *x xb3 * a3

* ¢23%2 + 2 * m3 * yb3 * £3 + 2 * m3 *
zb3 % a3 % ¢23 * 523 + 2 * m3*x zb3 * a2 *
c2 * s23$

m2 * ( k2zs + a2”2 + 2* a2 * xb2 ) +

2 % m3 % a2 * ( a3 + xb3 ) * 3 +

2 % m3% a2 * zb3 * s3 + m3 * ( k3ys +
+ a2”2 + a3®2 4+ 2 % a3 * xb3 3§

m3 * ( k3ys + a3"2 + 2 * a3 * xb3 )$

m2 % a2 % zb2 * s2 + m3 *( £3 * xb3 +

a3 % yb3 + a3 * f3 )* s23 + m3 *( a2 *
yb3 + a2 % £3 ) * s2 - m3 * £3 * zb3

* ¢23$

m3 * ( xb3 * f3 + a3 * yb3 + a3 * £3 )
* 523 - m3 * £3 * zb3 * ¢c23§

m3 * ( a2 * xb3 + a2 * a3 ) % ¢c3 + m3 *
a2 * zb3 * 3 + m3 * ( 2 * a3 * xb3 +
a3”®2 + k3ys )$

D[1,2]8

D(1,3]%

D[(2,3]8

load Corials/centrifugal matries

D1[1,1)

D1[1,2]

0 $

m2 * ( k2xs - k2ys - a2%2 - 2 *

a2 * xb2 ) ¥ ¢2 * s2 - m2 * a2 * yb2
* ¢22 + m3 * ( k3xs - k3zs ) * c2 *

s2 + m3 *( k3xs - k3zs ) * ¢3 * s3
+ 2 * m3 *( k3zs - k3xs )* 52 * s3 *

523 - 2 % @3 %*a2 * xb3 *¥ ¢2 * s23 + 4 * m3
* a3l * xb3 % s2 * s3 * 5§23 + m3 * a2 *
xb3 * s3 - 2 * m3 * a3 *
xb3 % ¢c2 * g2 - 2 * m3 * a3 * xb3 * c3
* g3 + m3 * a2% zb3 * c2 * ¢c23 - m3 * a22%*
zb3 * §2 * 23 + 2 *m3*al3*zb3*c23"2 - m3
* a3 * zb3 + m3 * a2 * a3 * 53 - 2 * m3
* a2 * a3 * c2 * g23 - m3 * a2%2 % c2 *
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D1[1,3)

D1(2,1]}

D1[2,2]

D1[2,3]

D1[3,3]

D1{3,1]
D1[3,2]
D2[1,1]
D2(1,2]
D2[2,1]
D2(2,2]
D2[1,3]
D2({3,1]

D2[2,3)

D2{3,2]

D2[3,3]

D3{1,1])

‘m3 % a2 * zb3 * c3§

s2 + 2 ¥ m3*% a3%2 * §2 * 53 * $23 - m3

* a3®2 % c2 * s2 - m3 * a3"2 * c3 * s3§$
m3 *( k3xs - k3zs ) * ¢c2 * s2 +

m3 *(k3xs - k3zs )* ¢c3 * s3 + 2 *

m3 *( k3zs - k3xs ) *s2 * s3 * g23

+ 4% m3%x a3*% xb3d* s2 * s3 * s23 - 2 * pn3

* a3 % xb3 * ¢2 ¥ s2 - 2 * m3 * a3l *

xb3 * ¢3 * s3 - m3 * a2 * xb3 * ¢c2 *

s23 + 2 * m3 * a3 * 2b3 * ¢23%2 + m3 * a2
* zb3 * ¢c2 ¥ ¢23 - m3 ¥ a3 * zb3 + 2 %

m3 * a3"2 * g2 % g3 * 5§23 - m3 * a2 *

al} % ¢c2 * 523 - m3 * a3"%2 * ¢2 * g2 -

m3 * a3%2 * ¢3 * g3$

D1[1,2]$

m2 * a2 * zb2 * ¢c2 + m3 * f3 * 2b3

* 523 + m3 *{ £3 * xb3 + a3 * yb3 + a3
* £3 )8

m3 * f£3 *
+ a3 * yb3

zb3 % 523
+ a3 x f3

+ m3 *( £3 * xb3
)y * ¢23$

m3 % f3 * zb3 * $23 + m3 *( £f3 * xb3
+ a3 * yb3 + a3 * £3 ) * c23$

D1({1,3]$

D1{2,3]$

- D1[1,2]$
09
D2[1,2]%

0 $
0 $
0 $

m3 *( a2 * xb3 + a2 * a3 ) * s3 4

D2[2,3]$

m3 *( -a2 * xb3 -
m3 * a2 * zb3 * c3$

aZz * a3l ) * s3 +

- D1[(1,3]%




pD3[1,2] : - D2[1,3]%
D3[1,3] : 0§
D3[2,1] : D3[1,2]$
D3[2,2] : - D2[2,3}%
D3[2,3] : 0§

D3[3,1] : D3[1
D3{3,2] : D3[2

D3[3,3] : 0§

form the gravity vector

Gl : 0§
G2 : -m2 * grav *( xb2 + a2 ) * c2 + m2 * grav ¥
yb2 * s2 - m3 % grav *( xb3 + a3 ) * c23 -
m3 % grav % zb3 * s23 - m3 * grav * a2 * c2§
G3 : -m3 * grav *( xb3 + a3 ) * c23 - m3 * grav *

zb3 * 5238

form the inertia matrix and non-linear h

d:matrix([d[1,1),d[1,2]
(4(3,1],4d4(3,2}],4d(3,3

,d(1,3]],[d4[2,1],d[2,2],d(2,3]],
118

hl:matrax([dl1[1,1],d1[1,2],d1(1,3]],[d1[2,1],
dl(2,2},d1(2,3]],(d1(3,1],d1[3,2],d1(3,3]])$¢

reduce the equations

hl : bfloat(hl)$
hl : ev(hl)$

hl : expand(hl)$
hl : xthru(hl);

h2:matrax([d2[1,1],d2(1,2],d2[1,3]),[d2({2,1],
d2(2,2].d2(2,3)),(d2[3,1),d2[3,2],d2(3,3]11)$

h2 : bfloat(h2)$




h2 : ev(h2)$
h2 : expand(h2)$
h2 : xthru(h2):

h3: matrax([d3[l 1],
312,2],¢3(2,3)

d3(1,2],d3(1,3]]),(d3[2,1),
},0d43(3,1]),d3(3,2],d3(3,3]1])$
h3 : bfloat(h3)$

h3 : ev(h3)$§

h3 : expand(h3)$§

h3 xthru(h3);
closeflle()

quit();

£ % % % ¥ O+ % % % O%T O % O%E % % %L O T T S % % % % % O % % % %S
SIMULATTION ROUTTINES

T % % % % % % % % % O% % O%T LT % T L L % LT LT LT R O% %L OL %% %R

T % % % % % % % %O LT OE O OE L OE T LT OLE LT LTS OL %R OROLS

(oo N®]

SIMFLECT3: Simulate Full Lagrange-Euler Computed Tourque
for the MMAE scenerio.

Abstract: This program attempts to control the PUMA-600
using the computed torque formulation with LE equations
of motion for a six degree of freedom robot arm. C
PUMACLE3 is used to generate

OO0O0O0

C the dynamics and the full interial matrix and gravity
C vector are used. Nonlinear terms are ignored. Desired
C positions, velocities accelerations and initial C
positions are input from the TRAJSETUP subroutine. The C
PUMA-600 is simulated by the SIM6DOF subroutine.

C Error data is formated and stored by the SEOUT C
subroutine. The GRDATA subroutine allows the user to C
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select the operational environment,

C
C VERSION 3 by LARRY TELLMAN 28 JUL 88
C
C
C % % % % % % % % % T OFT OE T T T OET OET LT OSE T LT T L LT T ET LT LS
C % % % % % T T T OE LT L ST OET T T OE ST LT OET OSE LT OE L T ST OSE % 8
C
SUBROUTINE RBTFLE3(OPT,Q,QD,I6,RB6,F6M,D,P,GG)
C
C Abstract: This subroutine allows the user to obtain C
several formulations of the Lagrange-Euler dynamics C
for a 3 link PUMA-600 robot arm. The user must select C

which option and also provide position, velocity, C
acceleration and joint 6 load information.

C Any load is assumed to be rigidly attached to joint 6.
C All user supplied joint 6 values must represent the C
link and load modeled as one entity. Actuator inertia C
values are summed with the diagonal inertia terms using C
Tarn's values, The reduced MACSYMA LE equations are C
used.
C
C
C VERSION 2.0 by LARRY TELLMAN 13 JuL 88
C
C Inputs:
C
c OPT: An integer variable with selects the dynamics C
formulation desired.
C
C Q: A (6x1) real vector of joint angles in radians.
C
C QD: A (6x1l) real vector of joint velocities in C
radians.
C
C 16: A (3x3) matrix of joint 6 interia terms.
C
C RB6: A (3xl) real position vector of the center of C
mass of joint 6 with respect to itself as ( C
X,Y,2z) vector,
C
C F6M: A real variable representing the external mass of
c joint 6.
C
c Outputs:
C
C D: A (6x6) real matrix of interial terms.

A-7




9]

C P: A (6x1) real vector of coriolis and centrifugal C
forces
c
C GG: A (6X1) GRAVITY VECTOR
C
C SUBROUTINE OPTIONS:
C
C OPT=1: The D matrix is assumed to be diagonal and C
Coriolis and centrifugal terms are ignored.
c
C OPT=2: The full D matrix is calculated but the the C
Coriolis and centrifugal terms are ignored.
C
C
C OPT=3: The full Lagrange-Euler dynamics are calculated.
C
C TOURQUE CALCULATION:
C T
C T - (D * QDD) + P P = (QD) * H * QD + G
C
o QDD: A (6x1) vector of joint accelerations.
C
c $F % % % % % % % OFT T LT OFT T OE F LT T LT L & % OE % % % %L % o8 %
C T % % % % % ¥ ¥ T LT OET LT YT LT LT LT OE LT T T E LY OEOEOLE LSS
SUBROUTINE SROBOT(Q,QD,QDD,TIN,I6,RB6,F6M,DELT,
# NINT,ENOISE,SNOTSFE)
C Abstract: This subroutine simulates the motion of a 6 C
DOF robot arm. Manipulator dynamics are calculated C
using the full
c Lagrange-Euler formulation. A 4th order Runga-Kutta C

integration technique 1is employed to compute the C
position, velocity and acceleration of the six joints C
that result from an applied torque. The user can C
specify the total simulation time, size of the C
integration interval and joint 6 loading.

Cc

c VERSION 2 MICHAEL B. LEAHY JR. 15 SEP 85

C

c REVISION 1: Incorporate viscous and static friction C
models

C 17 Jul 87

C




OO0 0O00

OO0 00

OO0 0000000000

(@]

REVISION 2: Incorparate encoder and system noises
28 JUL 88

Inputs:
Q: A (6x1l) real vector of joint angles in radians.
QD: A (6x1) real vector of joint velocities rad/sec.
16: A (3x3) matrix of joint 6 inertia terms.

RBG: A (3x1l) real position vector of the center of C
mass of joint 6 with respect to itself.

F6M: A real variable representing the mass of joint 6
TIN: A (6x1) real vector of applied torques.

DELT: A real variable representing the total C
simulation period.

NINT: An integer variable representing the number of
integration intervals.

ENOISE: STRENGTH OF THE UNIFORM ENCODER NOISE
SNOISE: STRENGTH OF THE GAUSSIAN SYSTEM NOISE
OQutputs:

Q,QD: Final values of these vectors.

QDD: A (6x1l) real vector of final joint acceleration
values in rad/secs 2.

NOTE: DELT/NINT SHOULD ALWAYS BE LESS THAN 1 ms.

$ % % % % % % T % T T ST YL LT T LT ET T LT LTS OL LR OLT LT RS

$ 0% % % % % OF OF T OE ST OET O OE LT T OET OE L OE LT L RS OLT LY LS

SUBROUTINE SLCTIC3(NIC)

Abstract: This subroutine allows the user to select the
manipulator initial condition for control algorithm C

evaluation under R3AGE. The IC may be one of three C

predefined conditions, input by the user or remain C
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unchanged. User input conditions are automatically C
checked apainst the specific manipulator range limits C
by the RCHK subroutine. IC values are stored in

G GCL O G Qo

G G O3 G S GGy G G

[CRYNY!

]

o

9]

QOO YO0

COMMON vectors in degrees and radians.
VERSION 1.0 MICHAEL B. LEAHY JR. 7 DEC 85

REVISION 1: Incorporates TMODE into MTYPE common and C
corrects
27 FEB 86 error of missing T6D matrix in TRAJ common.

REVISION 2: CHANGED TO RUN ON THE MICROVAX FILE C
STRUCTURE
14 JUL 88 LARRY TELLMAN

Output:

QO0: A (6xl) COMMON vector of initial joint angles in
degreers.

QOR: A (6x1) COMMON vector of initial joint angles in
radians.

NIC: An integer representing IC option number. When
the IC’'’s remain unchanged so does this value.

T % % % % % % 0% % 0T % T LT ¥ ST LT T E L L LT % % % YOS S LS

$ 0% % 0% % % % % % OE ST OLT OE ST O OT T S OE L OE S O ORT % OLT OB S OR

SUBROUTINE SLCTLD3

Abstract: This subroutine determines the manipulator C
load configuration used by R3AGE for a 3 link PUMA.
The user may select the default load model or input C
his/her own inertial and center of mass
values. Total link and load mass is checked against C
manipulator limits.

VERSION 1.0 MICHAEL B. LEAHY JR. 7 DEC 85
REVISED BY LARRY TELLMAN 28 JUL 88
REVISION 1: Incorporates TMODE into MTYPE common.

27 FEB 86
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C REVISION 2: Incorporates changes to default loading to

C 26 AUG 87 to account for joint 6 w/o a gripper as per
C Tarn's dynamics.

C

C REVISION 3: CHANGED TO REPRESENT A 3 LINK PUMA ARM

C 28 JUL 88

c

C

¢ I: puts:

c

C RTYPE: A character*2 COMMON variable that containing

the selected manipulator code.

o~~~
[ P]

(]

Outputs:

<a

@]

H6 : A (3x1) COMMON vector of load/link inertia about
the center of mass.

[

e

R6B: A (3x1) COMMON vector of load/link center of C
mass.

<

Fé6M: A COMMON real variable of load/link total mass.

PENS

o OO

(@]

$ % % % % % % T % % % T OF % % L T ¥ YT OYE O OLE % O %% % %%

@]

2 0% % % % % % % T % LT T O OYT O LT LT ET YL LT LT LT LT LT R LTSS

(91

—_~ o~

SUBROUTINE SLCTTJ3(NIC,PNIC,NSPI,ND)
C

¢ Abstract: This subroutine allows the user to select the

C , manipulator joint space position, velocity and C

acceleration trajectories for control algorithm C

evaluation under R3AGE. A zero, slow and fast set of C

base trajectories are predefined. The user may C specify

his/her own base trajectories contained in

C a set of three files. Actual trajectories stored in C

COMMON arrays are determined from the base trajectory C

and input sample rate. Position trajectories are C

formed by addition of the initial conditions selected C

bty the SLCTIC subroutine and actual trajectory data, C

and are checked against specific manipulator

C range limits by the RCHK subroutine. Trajectories C
starting from IC option 2 are reversed. The option to C
leave existinpg actual trajectory data unaltered is also C
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available.

c
C
C VERSION 1.0 MICHAEL B. LEAHY JR. 7 DEC 85
c ,
C REVISION 1: Incorporates the changes necessary so that
C IC2
C 30 JAN 86 initial condition selection is correctly C
handled when an unchanged trajectory is C
selected.
C
C REVISION 2: Incorporates TMODE into MTYPE common.
C 26 FEB 86
C
C REVISION 3: Incorporates changes to allows generation of
C 27 MAR 86 zero trajectory for any 7ms multiple.
C
C REVISION 4 Corrects errors in trajectory file C
specification
C 8 Aug 86 read statements.
C
¢ REVISION 5: Change default fast trajectory to spline C
one.
C 22 FEB 88
C
C REVISION 6: CHANGED TO MATCH THE FILE STRUCTURE ON THE
C MICROVAX
C 14 JUL 88 LARRY TELLMAN
C
C Input:
C
C QOR: A (6xl) COMMON vector of initial joint angles in
C radians.
C
C NSPI: An integer representing sampling rate speed.
C
C NIC: An integer representing initial condition number.
C
C PNIC: An integer representing the previous initial C
condition number.
C
C OQutput:
C
C ND: An integer representing the number of sampling
points.
C
C QDS1I: A (6,ND) COMMON matrix of incremental joint
positions.
C
C QDST: A (6,ND) COMMON matrix of joint velocities.
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QDSTT: A (6,ND) COMMON matrix of joint accelerations.

% % % % % % % % % T LT OET LT OE T L OE T OE L E YL YOS RS

% % % % % % % T L OF % % % % OE L O%T ¥ T %L LT OE L %R O%S

SUBROUTINE DINV(Q, IFILT, DET, A)

THIS ROUTINE WILL CONPUT THE INVERSE INERTIA MATIRX FOR A
THREE LINK PUMA ARM. THE EQUATIONS ARE BASED ON TARN'S
PAPER AND HAVE BEEN REDUCED BY MACSYMA. THE MATRIX NUMBER
DIRECTS THIS ROUTINE TO CALCULATE THE INERTIA FOR AN
ASSUMED LOAD.

VERSION 1: BY LARRY TELLMAN 2 AUG 88
INPUTS :
Q: POSITION VECTOR

IFILT: THE INERTIA MATRIX NUMBER

OUTPUTS:
A THE ADJOINT COF THE INVERSE INERTIA MATRIX
DET: THE DETERMINT OF THE INVERSE INERTIA MATRIX

$ % % % % % % OE % T T % % OE %L T LT LT LT L T LS OLT RSO YS

$ 0% % % % % % % % T T T %L S OE L LT T S OE YOS OLT L OLE S OLTYEORR

EXPERIMENTATL ROUNTTINES




$ % % % % % % % % % % % % % % T % % % O O OE % % % % OB % % % %

@)

2 0% % % % % % ¥ OF ¥ T OE Y OF % OFT Y Y LT LT LT LT YT R R OE LRSS

(@]

PROGRAM FFMBC
c
C THIS MAIN PROGRAM WILL RUN THE MMBC ALGORITHM ON THE
PUMA-560.
C THE FIRST THREE LINKS OF THE ROBOT ARE USED TO DEMONSTRATE
THE CONCEPT. IT NEEDED TO BE LINKED TO THE MMAELIB LIBRARY TO
PICK UP THE SUBROUTINES CALLED. THIS ROUTINE IS RUN 1IN
CONJUNCTION WITH THE ARCADE PROGRAM. THIS ROUTINE WILL MAKE

THE CALLS TO

C READ AND WRITE THE DATA TO THE SERVO PROCESSOR AND THE
ARCADE

C PROGRAM HANDELS THE CONTROL OF THE ROBOT. THE MMAE
ESTIMATE

C USED BY THIS ROUTINE CAN BE TURNED ON AND OFF BUT THE

C CALCULATIONS FOR THE ESTIMATE ARE DONE EACH SAMPLE PERIOD.
THE

c TIME REQUIRED FOR THE MMAE CALCULATIONS IS ON THE ORDER OF
18ms.

c THE DATA TRANSFER TAKERS AN ADDITIONAL 3 ms. THEREFORE
THE

C FEEDFORWRAD SAMPLE PERIOD NEEDED BY THIS ROUTINE IS 28ms.
C THE ACTUATOR INERTIAS ARE INCLUDED IN THE INERTIA MATRIX
C RETURNED FROM THE DYNAMICS SUBROUTINE.

C

G

C VERSION: 1 BY Larry Tellman 2 Oct 1988

C

C

C

C

C » % % % % % % $T T E FT T T LT T LT L LSO OE L YT LT LY SO YER
$ % %

c 2 % % % T % % % LT OE LT T OE LT T R OE T LT OE LT LT LTS OROLRE S
% % %
SUBROUTINE MMAEINI(INSP,ND)
C
C THIS ROUTINE WILL LOAD THE INITIAL DATA NEEDED FOR THE
MMAE TO
C RUN ON THE PUMA. IT IS CALLED BY THE FFMMBC ROUTINE.
C

C




o DATE: 26 SEPT 88 ‘ Larry Tellman
c

$ % % % % % % % T OF OE T L OE % T E OE % % Y E % % % L % O% R

w O

@}

$ % % % % % % % % % % % % % % % % LT LT %L %YYL OR YR

Co ®

SUBROUTINE PFDYN3(Q,QD)

(@]

Abstract: This subroutine allows the user to obtain
several
formulations of the Lagrange-Euler dynamics for a 3
ink PUMA-600
robot arm,. The user must select which option and also

— O

T O

rovide
position, velocity, acceleration and joint 6 load

e o

information.

Any load is assumed to be rigidly attached to joint 6.
11
C user supplied joint 6 values must represent the link
and load
C modeled as one entity. Actuator inertia values are
summed with
C the diagonal inertia terms using Tarn’s values. The
reduced
C MACSYMA LE equations are used. This routine is used
by FFMMBC.
C

> O

VERSION 2.0 by LARRY TELLMAN 26 SEPT

©

Inputs:

OO0

OPT: An integer variable with selects the dynamics
‘ormulation

=0

desired.
Q: A (6xl) real vector of joint angles in radians.

QD: A (6x1l) real vector of joint velocities in
adianrs.

I6: A (3x3) matrix of joint 6 interia terms.

oNeNs NN TN NeoNeNe!

RB6: A (3x1l) real position vector of the center of
ass of

O =

joint 6 with respect to itself as ( x,y,z )
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vector.

C

C F6M: A real variable representing the external mass of
joint 6.

C

C OQutputs:

C

C D: A (6x6) real matrix of interial terms.

C

C P: A (6x1l) real vector of coriolis and centrifugal
forces

C

C GG: A (6X1) GRAVITY VECTOR

C

C SUBROUTINE OPTIONS:

c

C OPT=1: The D matrix is assumed to be diagonal and
coriolis and

C centrifugal terms are ignored.

C

C OPT=2: The full D matrix is calculated but the the
coriolis and

C centrifugal terms are ignored.

C

C

c OPT=3: The full Lagrange-Euler dynamics are calculated.
C

C TOURQUE CALCULATION:

C T

C T = (D * QDD) + P P = (QD) * H * QD + G

c

C QDD: A (6xl) vector of joint accelerations.

C

C T % % % % % OFT LT OE T LT T L L L S OETE T T LTSS LSS RS
£ % %

F % % %2 % % % % % %L % % % % L % LT % T T LT % % L% % LS OL SR
2 % % % %

MMAE A ND KALMAN FILTEHR R OUN
T INES

T % % % % % % % % % % % % % OE O OE O OE R O%T %L S OO T % OS OO OR
$ % % % %




C $ 0% % % % % % % % % % % % % % ¥ T % LT T % L L L O O% % O% R

5 % ;
PROGRAM KALTST

C

C THIS PROGRAM CALCULATES AND STORES THE PROPAGATED
COVARIANCE

C MATRIX AND TEH MEASUREMENT UPDATE COVARIANCE MATRIX.

C

C

C VERSION 1: BY LARRY TELLMAN 31 JUL 88

C

C

C % % % % % % % % % % % % ¥ & % % % ¥ % % ¥ K % % % % % % %
%

C £ % % % % % % % % % % O T ¥ T ¥ L LT LT LS OL LR ST LT SR
% % %

SUBROUTINE KGAIN(IFILT,GAIN)
C
C

C THIS SUBROUTINE WILL COMPUTE THE KALMAN FILTER GAIN FOR
THE

G FIRST THREE LINKS OF THE PUMA ARM. THE CODE HAS BEEN
REDUCED

C AND GENERATED BY MACSYMA. FOR DETAILS ON THE NOTATION SEE
c DR. MAYBACK'S BOOK wvol. 1.

c

C

C VERSION 1 BY LARRY TELLMAN 27 JUL 88

C

C

C INPUTS:

C

C IFILT: THE FILTER NUMBER

C

C COMMON DATA NEEDED:

C

c PTM: 6x6 MATRIX OF P(ti-)

c

C R: 3x3 MATRIX OF THE MEASUREMENT NOISE

C

C OUTPUTS

C

C GAIN: 6x3 KALMAN FILTER GAIN MATRIX

C
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e}

OO0 CcOoOGaoOoaOaG

—~
4

oo

RS Ne]

e NeNa]

$ % % % % % % % 0% % % % T % % & % % OO OO OB L & % % % %

$ % % % % % % T % % % % % %L ¥ % ET % % L LT %L ¥ ST O% % % O% %

SUBROUTINE MMAE(ND,E,POSD,IPROP,ELOAD)

THIS ROUTINE WILL COMPUTE AN ESTIMATE OF THE LOAD

USING THE MULTPLE MODEL ADAPTIVE ESTIMATION SCHEME.

SEE DR MAYBECK’'S BOOK vol. 2 FOR MORE DETAILS ON THE
ALGORITHM AND THE NOTATION. THE ROBOT IS ASSUME TO BE A
THREE LINK PUMA MANIPULATOR.

VERSION 1: BY LARRY TELLMAN 2 AUG 88
INPUTS:
ND: THE NUMBER OF DATA POINTS

Z: THE MEASURED OF THE POSITION ERROR IN THE LINKS
POSD: THE DESIRED POSITIONS
DEL: THE TIME BETWEEN MEASUREMENTS

IPORP: THE NUMBER OF ITERATIONS TO PROPAGATE OVER

OUTPUT

ELOAD: THE ESTIMATE OF THE LOAD

$ % % % % % % O%T YT OE T O S OET T L OEOE LT LT OE LY OE LY YOS

£ % % % % % % % % O%E % % L T OB OFT %% % %% YL OSEOLORTR RN
SUBROUTINE PROBEST(ELOAD)

THIS ROUTINE WILL CALCULATE THE CONDITIONAL PROBABLITY
DESITY NEEDED FOR THE MULTIPLE MODEL ADAPTIVE ESTIMATOR
ALGORITHM. FOR MORE DETAILS SEE DR. MAYBECK'S BOOK vol.
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1.

C 'H = I FOR THESE CALCULATIONS. THE PREVIOUS VALUE OF THE
c CONTILIONAL PROBALITY IS ASSUNED TO BE 1/3 FOR EACH
FILTER. -

C THE CALULATIONS ARE BASED ON LINKS 1 AND 2 ONLY. THIS
SEEMED

C TO PROVIDE THE BEST ESTIMATE OF THE LOAD. THE INITIAL
LOAD

10(‘1()0?)0\‘)"60(‘:0(‘)\‘:OQC‘)L‘)(‘JOC‘)(‘)OL‘;CJOOC:(‘:OOO

L

C

ESTIMATE HAS A BIAS TO IT AND MUST BE RESCALED.

1 T -1
P = EXP[ -.5 * RES * A * RES ]

WHERE A = H % PTM * H + R

VERSION 1: BY LARRY TELLMAN 3 AUG 88
INPUTS:
RES: THE RESIDUES FROM THE KALMAN FILTER
PTM: THE COVARIANCE MATRIX AT THE END OF THE
ROPAGATION
R: THE MEASURMENT NOISE MATRIX
OUTPUT:

ELOAD: THE ESTIMATE OF THE LOAD

% % % % % % % % 0% % % 0% % % % L LT % LT R OE BT LT LT OE R O OY R

% % % % % % % % % % % ¥ % % % % % ¥ & % & % ¥ % % ¥ % ¥ %

SUBROUTINE PTPLUS(IF)




C THIS ROUTINE WILL COMPUTE THE COVARIANCE MATRIX AFTER THE

G MEASUREMENT UPDATE. THE CODE WAS REDUCED AND GENERATED BY
MACSYMA.

C FOR MORE DETAIL ON THE NOTATION SEE DR. MAYBECK’S BOOK
vol. 1.

C

C VERSION 1 BY LARRY TELLMAN 3
SEPT 88

C

C INPUT

¢

C IF: THE FILTER NUMBER

C

C

C COMMON DATA NEEDED:

C

C

C R: THE MEASUREMENT NOISE MATRIX (3x3)

v

C PTM: THE COVARIANCE MATRIX AFTER THE PROPAGATION CYCLE
(6%x6)

Cc

C OUTPUT:

C

C PTP: THE COVARIANCE MATRIX AFTER THE MEASUREMENT UPDATE
(6x6)

C

C

C

C $ % % % % % % T T T EE % S T LT L LT LT T %L LT SO OSSR
% %

C

SUBROUTINE PHIMAT(A,CFL,PHI)

C

C $F % % % % % OF OE T OE T OE S OET HE ST LT LY YR LYY SR
%

C

¢ THIS ROUTINE CONPUTES THE STATE TRANSITION MATRIX WITH THE
C ASSUMPTION THAT THE F MATRIX IS CHANGING SLOWLY

¢ COMPARED TO THE SYSTEM DYNMAICS. A TRUNCATED TAYLOR
SERIES

C IS USED TO APPROXIMATE THE exp(Ft) EXPRESSION, REFERENCE
C DR. MAYBECK'S BOOK wvol. 1.

C

C

C VERSION 1 BY LARRY TELLMAN 27 JUL 88

C
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INPUT:

IF: THE FILTER NUMBER

A: O6x6 PERTURBATION MATRIX

DEL: TIME BETWEEN SAMPLES

OUTPUT

PHI: THE STATE TRANSITION MATRIX 6x6

OOOOO0O00O00000a 0000

£ % % % % % % % % % YT OEOET YT ST LT OE LT LT OE S OET T ST OB O OSS

SUBROUTINE PTMINUS(IF,POSD,PHI)

C F % % % % % % % % % % % T O$E % OET T HE % % LT T L T OET LT S OLT %
®

C

C THIS ROUTINE WILL FIND THE COVARIANCE MATRIX AT THE END OF
C THE PROPAGATION CYCLE. AN FIRST ORDER APPROXIMATION 1IS
MADE

C TO MAKE THE INTEGRATION OF THE (PHI G Q G' PHI'’) TERM
POSSIBLE.

Cc PHI HAS A SECOND ORDER APPROXIMATION IN IT. THE INERTIA
MATRIX

C IS ASSUMED TO BE CONSTANT OVER THE PROPAGATION PERIOD.

C

C

Cc VERSION 1: BY LARRY TELLMAN 31 JUL 88

C

C UPDATE 1: 2 SEPT 88

Cc

C ALLOW FOR THE PROPAGATION OVER MULTIPLE CYCLES

C

C

C

C INPUTS:

C

C IF: THE FILTER THAT SHOULD BE PROPAGATED

C

C POSD: DESIRED POSITION

C

C PHI: THE STATE TRASITION MATRIX

C
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C

-~
-

-~

-

COMMON DATA NEEDED:
PTP: THE (6x6) COVARIANCE MATRIX AFTER THE LAST
MEASUREMENT

QNOISE: THE (3x3) DYNAMICS DRIVING NOISE. ASSUMED TO

3E DIAGONAL

OO 000

)«

DEL: THE PROPAGATION TIME

COMMON DATA UPDATED:

PTM: THE COVARIANCE MATRIX AT THE END OF THE

PROPAGATION CYCLE

Ca

(@]

oo

OGGw OO

aa

acaoacaooacoaon

(oMo

o NSNS NGNS N IO

£ % % % % % % % % % % % % % ¥ ¥ L % % ¥ OE O OK O% % OB % O% %
T % % %

SUBROUTINE XTMINUS(IF,IPROP,PHT)

% % % % % % % % % % O OFT % LT FT LT T L L ST L OET L % ¥ L OR YOS

THIS ROUTINE WILL COMPUTE THE STATE ESTIMATE AT THE END OF

A PROPAGATION CYCLE FOR A THREE LINK PUMA ARM.

VERSION 1: BY LARRY TELLMAN 2 AUG 88
UPDATE 1: 2 SEPT 88

TO ALLOW THE PROPAGATION OVER MULTIPLE SAMPLE
PERIODS

INPUTS:

IF: THE FILTER NUMBER

IPROP: THE NUMBER OF CYCLES TO PROPAGATE OVER
COMMON DATA NEEEDED:

XTP: THE STATE ESTIMATE AT THE END OF THE PREVIOUS

MEASUREMENT UPDATE

A-22




OVAR

FOOOOOOOOCOOOOOGOO

O

eNeNoNeoNeNeNoNONONS NI

F: SYSTEM DISCRIPTION MATRIX

DEL: THE TIME BETWEEN SAMPLE
OUTPUT
XTM: THE STATE ESTIMATE AFTER THE PROPAGATION CYCLE
PHI: THE STATE TRANSITION MATRIX,. NEEDED 1IN THE
IANCE
ROUTINE

% % % % % % % % % % % % ¥ L % OE %O L OO LT OV OS ORF S OL S

T % % % % ¥ % % % T O OFT YT OE O T OFT %F % O F T %L T LTS OR N

SUBROUTINE XTPLUS(IF)

THIS ROUTINE WILL CONPUTE THE STATE ESTIMATE OF THE KALMAN
FILTER EQUATIONS.

VERSION 1: BY LARRY TELLMAN 3 SEPT 88

INPUTS :
IF: THE FILTER NUMBER

COMMON DATA NEEDED:

PTM: COVARIANCE MATRIX AT THE END OF THE PROAGATION
R: MEASUREMENT NOISE MATRIX
RES : THE RESIDULES OF THE STATES
OUTPUT
XTP: THE NEW STATE ESTIMATE AFTER THE NEW MEASUREMENT




C T % % % % % % T % % % OF % % T % OFT O %Y L% Y L L OE R O%R

$ % % % % % % % % % T % O OE O T OF OE O L OE ST OF LT OET S OE S %% %

O THER ROUTTINES USED

$ % % % % % % % % ¥ % % OT LT OE OE O OET LT L ¥ % L %% L RO Y S

) T % % % % % % % ¥ % OF % % ¥ O OFT OE OF OE OHE % OET ST R OE LT S O% %

N

PROGRAM FMAT

]

(@)

THIS PROGRAM WILL COMPUT THE F MATRIX USED IN PURTABATION

c CONTRCL
C OF A 3 LINK PUMA 560 WITH NO LOAD. THE EQUATIONS ARE C
DERIVED

FROM THE SIMBOLICLLY RTEDUCED EQUATIONS OF MOTION. FOR A
DIFFERENT

L2 U

C LOAD THE EOM MUST BE RERUN USING MACSYMA TO GENERATE THE
C FORTRAN
C CODE, THERE ARE THREE DIFFERENT VERSIONS OF THIS PROGRAM.
C ONE FOR EACH OF THE LOADS IN THE MMAE.
C
C SUBROUTINES CALL
C SLCTTJ3 : COMPUTES THE TRAJECTORY
C PDGCST3 : COMPUTS THE TORQUE FOR 3DOF PUMA
C INPUTS
C NONE
C
C OUTPUTS
C ) F MATRIX OF NUMBERS FOR EACH POINT ALONG THE C
TRAJECTORY
(o
C VERSION 1.0 LARRY TELLMAN 12 JUL 88
C
C $ % % % % % % % O%¥T $F % % % % % % OFT % % % BT % %L % % % % % %
C $ % % % % % % % % % % % % T % % % OHE % T T % LT % % % L L%
C
PROGRAM VECMAX
C
C




O

GO0

G GO G

THIS PROGRAM TAKES DATA FROM A 6 X 6 vector DATA FILE
AND CONVERTS IT INTO THE MATRIXX FORMAT FOR USE 1IN
MATRIXX.

WRITTEN BY: CAPT LARRY TELLMAN
14 JUL 88
NO RIGHTS RESERVED

£ % % % % % % O%F % % % % % % OE % % T OB % % L % % R L %% R

$ 0% % % % % % % & % % % % % % % % ¥ & % % ¥ § % & § % % %

PROGRAM MATMAX

THIS PROGRAM TAKES DATA FROM A 6 X 6 MATRIX DATA FILE
AND CONVERTS IT INTO THE MATRIXX FORMAT FOR USE IN C
MATRIXX.

WRITTEN BY: CAPT LARRY TELLMAN
14 JUL 88
NO RIGHTS RESERVED

T % % % % % % T L OE T L O OE O OE LT OET T LT T H L OT S OF %S




Appendix B. Trajectory Profiles

This appendix contaius plots of Trajectories Two and Three. It also has plots

of the eigenvalues of the F'(a,t) matrices.
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Figure B.l. Trajectory Two: Position
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EIGENVALUE(REAL PART)

Figure B.2. Eigenvalues for Trajectory Two

0.0 Kg: Eigenvalue 1

0.0 Kg: Eigenvalue 2

5.0 Kg: Eigenvalue 1

- - { 5.0 Kg: Eigenvalue 2
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EIGENVALUE(REAL PART)
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Figure B.3. Eigenvalues for Trajectory Two: Cont

— 1 0.0 Kg: Eigenvalue 3
0.0 Kg: Eigenvalue 4
---15.0 Kg: Eigenvalue 3
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FIGENVALUE(REAL PART)

-2 r , r 1 I

!

.............. r—r——————————————

24 | — : ' : : ;
. i .
L

-36 |- = , )
-39 — ; f T ' }
e I — ereerereeemessendrensecraenranens I
-42 — J E— |
......... OOt APy SOSSiyetig eSSt PPty MR
!
-45 — -~

0 2 4 6 8 1 L 1.2
TIME(SEC)

Figure B.4. Eigenvalues for Trajectory Two: Cont

— 1 0.0 Kg: Eigenvalue 5
0.0 Kg: Eige{walue 6
- - -] 5.0 Kg: Eigenvalue 5
- .- 15.0 Kg: Eigenvalue 6
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Figure B.5. Trajectory Three: Position
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Figure B.6. Trajectory Three: Velocity
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Figure B.7. Trajectory Three: Acceleration
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Figure B.8. Eigenvalues for Trajectory Three

0.0 Kg: Eigenvalue 1

0.0 Kg: Eigenvalue 2

.0 Kg: Eigenvalue 1
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Figure B.9. Eigenvalues for Trajectory Three: Cont

— 1 0.0 Kg: Eigenvalue 3
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Appendix C. FError Tracking Profiles for Trajectory Three

This appendix contains plots of the tracking errors for Trajectory Three. It

also has the plot of the payload estimate for Trajectory Three.
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Figure C.1. Tracking Error for the Trajectory Three: Link 1
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Figure C.2. Tracking Error for the Trajectory Three: Link 2
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Figure C.3. Tracking Error for the Trajectory Three: Link 3
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Figure C.4. Payload Estimate for the Trajectory Three

!"— T Payload Value Used In The Feedforward Element: a

-+ Payload Estimate Out Of MMAE: a;




Appendix D. EFrperimental Results

This appendix contains the experimental results for Trajectory Three. The
first set of plot are of the tracking errors for each of the links. The plots show the
cases where the incorrect SMBC, true SMBC, and the MMBC. The final plot is
of the payload value used by the controller and the payload estimate out of the

MMAE.
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Figure D.1. Experimental Tracking Error for Trajectory Three: Link 1
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Figure D.2. Experimental Tracking Lirror for Trajectory Three: Link 2
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Figure D.3. Experimental Tracking Error for Trajectory Three: Link 3
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Figure D.4. Experimental Load Estimate for Trajectory Three

— { Payload Value Used In the Feedforward Element: a
o I Payload Estimate Out Of MMAE: a;
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